Keck spectroscopy of faint 3 < z < 8 Lyman break galaxies: Evidence for a declining fraction of emission line sources in the redshift range 6 < z < 8

Matthew A. Schenker, Daniel P. Stark, Richard S. Ellis, Brant E Robertson, James S. Dunlop, Ross J. McLure, Jean Paul Kneib, Johan Richard

Research output: Contribution to journalArticlepeer-review

260 Scopus citations

Abstract

Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Lyα) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Low Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5σ sensitivity of <50 Å for the rest-frame equivalent width (EW) of Lyα emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Lyα fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Lyα EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more sensitive multi-slit infrared spectrographs, the prospects for improving the statistical validity of this result are promising.

Original languageEnglish (US)
Article number179
JournalAstrophysical Journal
Volume744
Issue number2
DOIs
StatePublished - Jan 10 2012
Externally publishedYes

Keywords

  • galaxies: evolution
  • galaxies: formation
  • galaxies: high-redshift
  • galaxies: starburst

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Keck spectroscopy of faint 3 < z < 8 Lyman break galaxies: Evidence for a declining fraction of emission line sources in the redshift range 6 < z < 8'. Together they form a unique fingerprint.

Cite this