JWST Imaging of Edge-on Protoplanetary Disks. IV. Mid-infrared Dust Scattering in the HH 30 Disk

Ryo Tazaki, François Ménard, Gaspard Duchêne, Marion Villenave, Álvaro Ribas, Karl R. Stapelfeldt, Marshall D. Perrin, Christophe Pinte, Schuyler G. Wolff, Deborah L. Padgett, Jie Ma, Laurine Martinien, Maxime Roumesy

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We present near- and mid-infrared (IR) broadband imaging observations of the edge-on protoplanetary disk around HH 30 with the James Webb Space Telescope/Near Infrared Camera and the Mid-Infrared Instrument (MIRI). We combine these observations with archival optical/near-IR scattered light images obtained with the Hubble Space Telescope and a millimeter-wavelength dust continuum image obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) with the highest spatial resolution ever obtained for this target. Our multiwavelength images clearly reveal the vertical and radial segregation of micron-sized and submillimeter-sized grains in the disk. In the near- and mid-IR, the images capture not only bireflection nebulae separated by a dark lane but also diverse dynamical processes occurring in the HH 30 disk, such as spiral- and tail-like structures, a conical outflow, and a collimated jet. In contrast, the ALMA image reveals a flat dust disk in the disk midplane. By performing radiative transfer simulations, we show that grains of about 3 μm in radius or larger are fully vertically mixed to explain the observed mid-IR scattered light flux and its morphology, whereas millimeter-sized grains are settled into a layer with a scale height of ≳1 au at 100 au from the central star. We also find a tension in the disk inclination angle inferred from optical/near-IR and millimeter observations, with the latter being closer to exactly edge-on. Finally, we report the first detection of the proper motion of an emission knot associated with the mid-IR collimated jet detected by combining two epochs of our MIRI 12.8 μm observations.

Original languageEnglish (US)
Article number49
JournalAstrophysical Journal
Volume980
Issue number1
DOIs
StatePublished - Feb 10 2025

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'JWST Imaging of Edge-on Protoplanetary Disks. IV. Mid-infrared Dust Scattering in the HH 30 Disk'. Together they form a unique fingerprint.

Cite this