Jointly Efficient and Optimal Algorithms for Logistic Bandits

Louis Faury, Marc Abeille, Kwang Sung Jun, Clément Calauzènes

Research output: Contribution to journalConference articlepeer-review

12 Scopus citations

Abstract

Logistic Bandits have recently undergone careful scrutiny by virtue of their combined theoretical and practical relevance. This research effort delivered statistically efficient algorithms, improving the regret of previous strategies by exponentially large factors. Such algorithms are however strikingly costly as they require Ω(t) operations at each round. On the other hand, a different line of research focused on computational efficiency (O(1) per-round cost), but at the cost of letting go of the aforementioned exponential improvements. Obtaining the best of both world is unfortunately not a matter of marrying both approaches. Instead we introduce a new learning procedure for Logistic Bandits. It yields confidence sets which sufficient statistics can be easily maintained online without sacrificing statistical tightness. Combined with efficient planning mechanisms we design fast algorithms which regret performance still match the problem-dependent lower-bound of Abeille et al. (2021). To the best of our knowledge, those are the first Logistic Bandit algorithms that simultaneously enjoy statistical and computational efficiency.

Original languageEnglish (US)
Pages (from-to)546-580
Number of pages35
JournalProceedings of Machine Learning Research
Volume151
StatePublished - 2022
Event25th International Conference on Artificial Intelligence and Statistics, AISTATS 2022 - Virtual, Online, Spain
Duration: Mar 28 2022Mar 30 2022

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Jointly Efficient and Optimal Algorithms for Logistic Bandits'. Together they form a unique fingerprint.

Cite this