TY - JOUR
T1 - JEPEGMIX
T2 - Gene-level joint analysis of functional SNPs in cosmopolitan cohorts
AU - Lee, Donghyung
AU - Williamson, Vernell S.
AU - Bigdeli, T. Bernard
AU - Riley, Brien P.
AU - Webb, Bradley T.
AU - Fanous, Ayman H.
AU - Kendler, Kenneth S.
AU - Vladimirov, Vladimir I.
AU - Bacanu, Silviu Alin
N1 - Funding Information:
This work was supported by National Institute on Drug Abuse [R25DA026119 to D.L.], National Institutes of Mental Health [R21MH100560 to S.A.B. and B.P.R.] and National Institute on Alcohol Abuse and Alcoholism [R21AA022717 to S.A.B. and V.I.V.; P50AA022537 to S.A.B. and K.S.K.].
Publisher Copyright:
© 2015 The Author 2015. Published by Oxford University Press.
PY - 2016/1/15
Y1 - 2016/1/15
N2 - Motivation: To increase detection power, gene level analysis methods are used to aggregate weak signals. To greatly increase computational efficiency, most methods use as input summary statistics from genome-wide association studies (GWAS). Subsequently, gene statistics are constructed using linkage disequilibrium (LD) patterns from a relevant reference panel. However, all methods, including our own Joint Effect on Phenotype of eQTL/functional single nucleotide polymorphisms (SNPs) associated with a Gene (JEPEG), assume homogeneous panels, e.g. European. However, this renders these tools unsuitable for the analysis of large cosmopolitan cohorts. Results: We propose a JEPEG extension, JEPEGMIX, which similar to one of our software tools, Direct Imputation of summary STatistics of unmeasured SNPs from MIXed ethnicity cohorts, is capable of estimating accurate LD patterns for cosmopolitan cohorts. JEPEGMIX uses this accurate LD estimates to (i) impute the summary statistics at unmeasured functional variants and (ii) test for the joint effect of all measured and imputed functional variants which are associated with a gene. We illustrate the performance of our tool by analyzing the GWAS meta-analysis summary statistics from the multi-ethnic Psychiatric Genomics Consortium Schizophrenia stage 2 cohort. This practical application supports the immune system being one of the main drivers of the process leading to schizophrenia. Availability and implementation: Software, annotation database and examples are available at http://dleelab.github.io/jepegmix/. Contact: Supplementary information: Supplementary material is available at Bioinformatics online.
AB - Motivation: To increase detection power, gene level analysis methods are used to aggregate weak signals. To greatly increase computational efficiency, most methods use as input summary statistics from genome-wide association studies (GWAS). Subsequently, gene statistics are constructed using linkage disequilibrium (LD) patterns from a relevant reference panel. However, all methods, including our own Joint Effect on Phenotype of eQTL/functional single nucleotide polymorphisms (SNPs) associated with a Gene (JEPEG), assume homogeneous panels, e.g. European. However, this renders these tools unsuitable for the analysis of large cosmopolitan cohorts. Results: We propose a JEPEG extension, JEPEGMIX, which similar to one of our software tools, Direct Imputation of summary STatistics of unmeasured SNPs from MIXed ethnicity cohorts, is capable of estimating accurate LD patterns for cosmopolitan cohorts. JEPEGMIX uses this accurate LD estimates to (i) impute the summary statistics at unmeasured functional variants and (ii) test for the joint effect of all measured and imputed functional variants which are associated with a gene. We illustrate the performance of our tool by analyzing the GWAS meta-analysis summary statistics from the multi-ethnic Psychiatric Genomics Consortium Schizophrenia stage 2 cohort. This practical application supports the immune system being one of the main drivers of the process leading to schizophrenia. Availability and implementation: Software, annotation database and examples are available at http://dleelab.github.io/jepegmix/. Contact: Supplementary information: Supplementary material is available at Bioinformatics online.
UR - http://www.scopus.com/inward/record.url?scp=84959880745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959880745&partnerID=8YFLogxK
U2 - 10.1093/bioinformatics/btv567
DO - 10.1093/bioinformatics/btv567
M3 - Article
C2 - 26428293
AN - SCOPUS:84959880745
SN - 1367-4803
VL - 32
SP - 295
EP - 297
JO - Bioinformatics
JF - Bioinformatics
IS - 2
ER -