Jamming attack on in-band full-duplex communications: Detection and countermeasures

Manjesh K. Hanawal, Diep N. Nguyen, Marwan Krunz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

26 Scopus citations

Abstract

Recent advances in the design of in-band full-duplex (IBFD) radios promise to double the throughput of a wireless link. However, IBFD-capable nodes are more vulnerable to jamming attacks than their out-of-band full-duplex (OBFD) counterparts, and any advantages offered by them over the OBFD nodes can be jeopardized by such attacks. A jammer needs to attack both the uplink and the downlink channels to completely break the communication link between two OBFD nodes. In contrast, he only needs to jam one channel (used for both uplink and downlink) in the case of two IBFD nodes. Even worse, a jammer with the IBFD capability can learn the transmitters' activity while injecting interference, allowing it to react instantly with the transmitter's strategies. In this paper, we investigate frequency hopping (FH) technique for countering jamming attacks in the context of IBFD wireless radios. Specifically, we develop an optimal strategy for IBFD radios to combat an IBFD reactive sweep jammer. First, we introduce two operational modes for IBFD radios: transmission reception and transmission-detection. These modes are intended to boost the anti-jamming capability of IBFD radios. We then jointly optimize the decision of when to switch between the modes and when to hop to a new channel using Markov decision processes. Numerical investigations show that our policy significantly improves the throughput of IBFD nodes under jamming attacks.

Original languageEnglish (US)
Title of host publicationIEEE INFOCOM 2016 - 35th Annual IEEE International Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467399531
DOIs
StatePublished - Jul 27 2016
Event35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM 2016 - San Francisco, United States
Duration: Apr 10 2016Apr 14 2016

Publication series

NameProceedings - IEEE INFOCOM
Volume2016-July
ISSN (Print)0743-166X

Other

Other35th Annual IEEE International Conference on Computer Communications, IEEE INFOCOM 2016
Country/TerritoryUnited States
CitySan Francisco
Period4/10/164/14/16

ASJC Scopus subject areas

  • General Computer Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Jamming attack on in-band full-duplex communications: Detection and countermeasures'. Together they form a unique fingerprint.

Cite this