JADES: Insights into the low-mass end of the mass-metallicity-SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy

Mirko Curti, Roberto Maiolino, Emma Curtis-Lake, Jacopo Chevallard, Stefano Carniani, Francesco D'Eugenio, Tobias J. Looser, Jan Scholtz, Stephane Charlot, Alex Cameron, Hannah Übler, Joris Witstok, Kristian Boyett, Isaac Laseter, Lester Sandles, Santiago Arribas, Andrew Bunker, Giovanna Giardino, Michael V. Maseda, Tim RawleBruno Rodríguez Del Pino, Renske Smit, Chris J. Willott, Daniel J. Eisenstein, Ryan Hausen, Benjamin Johnson, Marcia Rieke, Brant Robertson, Sandro Tacchella, Christina C. Williams, Christopher Willmer, William M. Baker, Rachana Bhatawdekar, Eiichi Egami, Jakob M. Helton, Zhiyuan Ji, Nimisha Kumari, Michele Perna, Irene Shivaei, Fengwu Sun

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

We analysed the gas-phase metallicity properties of a sample of low-stellar-mass (log M?/M. 9) galaxies at 3 < z < 10 observed with JWST/NIRSpec as part of the JADES programme in its deep GOODS-S tier. By combining this sample with more massive galaxies at similar redshifts from other programmes, we study the scaling relations between stellar mass (M?), oxygen abundance (O/H), and star-formation rate (SFR) for 146 galaxies spanning three orders of magnitude in stellar mass and out to the epoch of early galaxy assembly. We find evidence for a shallower slope at the low-mass end of the mass-metallicity relation (MZR), with 12+log(O/H) = (7.72 ± 0.02) + (0.17 ± 0.03) log(M?/108 M ), in good agreement with the MZR probed by local analogues of high-redshift systems, such as the 'Green Pea' and 'Blueberry' galaxies. The inferred slope is well matched by models including 'momentum-driven' supernova (SN) winds, suggesting that feedback mechanisms in dwarf galaxies (and at high z) might be different from those in place at higher masses. The evolution in the normalisation is observed to be relatively mild compared to previous determinations of the MZR at z ∼ 3 (∼0.1−0.2 dex across the explored mass regime). We observe a deviation from the local fundamental metallicity relation (FMR) for our sample at high redshift, especially at z > 6, with galaxies significantly less enriched than predicted given their M? and SFR (with a median offset in log(O/H) of ∼0.5 dex, significant at ∼5σ). These observations are consistent with an enhanced stochasticity in the gas accretion and star-formation history of high-redshift systems, prompting us to reconsider the nature of the relationship between M?, O/H, and SFR in the early Universe.

Original languageEnglish (US)
Article numberA75
JournalAstronomy and astrophysics
Volume684
DOIs
StatePublished - Apr 1 2024

Keywords

  • Galaxy: evolution
  • Galaxy: fundamental parameters
  • ISM: abundances
  • galaxies: ISM
  • galaxies: abundances
  • galaxies: high-redshift

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'JADES: Insights into the low-mass end of the mass-metallicity-SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy'. Together they form a unique fingerprint.

Cite this