Investigation of oblique breakdown in a supersonic boundary layer at Mach 2 using DNS

Christian S.J. Mayer, Stefan Wernz, Hermann F. Fasel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations

Abstract

The early nonlinear stages of transition in a supersonic boundary layer at Mach 2 are investigated using spatial Direct Numerical Simulations (DNS). The computational setup matches earlier experimental studies by Kosinov et al., where transition was triggered by localized forcing leading to the development of a wedge-shaped wave packet. While the focus of these experiments has been on a new breakdown mechanism, called asymmetric subharmonic resonance, our interpretation of the experimental data indicates the presence of another, possibly competing mechanism, which exhibits the characteristics of an oblique breakdown. If confirmed, this would be the first experimental evidence of the oblique breakdown mechanism in a supersonic boundary layer. With the simulations presented here, the possible presence of this breakdown mechanism in the experiments is explored by deliberately suppressing subharmonic resonances in the DNS and by comparing the numerical results with the experimental data. The DNS results show excellent agreement with the experimental measurements for both linear and nonlinear transition stages. Most importantly, our results clearly show characteristic features of the oblique breakdown mechanism as observed in our earlier numerical investigations.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
Pages11526-11542
Number of pages17
ISBN (Print)1563478900, 9781563478901
DOIs
StatePublished - 2007
Event45th AIAA Aerospace Sciences Meeting 2007 - Reno, NV, United States
Duration: Jan 8 2007Jan 11 2007

Publication series

NameCollection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
Volume17

Other

Other45th AIAA Aerospace Sciences Meeting 2007
Country/TerritoryUnited States
CityReno, NV
Period1/8/071/11/07

ASJC Scopus subject areas

  • Space and Planetary Science
  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Investigation of oblique breakdown in a supersonic boundary layer at Mach 2 using DNS'. Together they form a unique fingerprint.

Cite this