TY - JOUR
T1 - Investigation of mechanisms contributing to slow desorption of hydrophobic organic compounds from mineral solids
AU - Farrell, James
AU - Grassian, David
AU - Jones, Martin
PY - 1999/4/15
Y1 - 1999/4/15
N2 - This research investigates the mechanisms contributing to the slow desorption of hydrophobic organic compounds from water-saturated mineral solids. The mechanisms investigated were adsorption-retarded aqueous diffusion, micropore diffusion, high-energy micropore adsorption, and micropore blockage by precipitated minerals. To reduce the potential confounding effects of adsorbent heterogeneity, a set of homogeneous silica gel and glass bead adsorbents were used in the investigation. Desorption rates for the slow-desorbing fractions of chloroform [CF), trichloroethylene (TCE), and perchloroethylene (PCE) from silica gel did not conform to the pore-diffusion model for adsorption-retarded aqueous diffusion. This indicated that diffusion through adsorbent mesopores was not responsible for slow desorption from silica gel. Micropore-diffusion modeling of TCE desorption from three silica gels and microporous glass beads indicated that pores less than 2 nm in diameter were responsible for slow desorption. Desorption rates for CF, TCE, and PCE from silica gel were also measured in methanol solutions. Under methanol extraction conditions, desorption rates for all three compounds were 1-2 orders of magnitude less than under watersaturated conditions. This indicated that high-energy adsorption was not responsible for the slow-desorbing fraction, and suggested that mineral precipitation leads to blockage of intragranular micropores. The activation energy for TCE desoration from water-saturated silica gel was measured using temperature-programmed desorption. The TCE desorption activation energy of 15 kJ/mol was close to the dissolution enthalpy for silica gel of 13 kJ/mol. This supported the hypothesis that micropore blockage by precipitated minerals may be limiting contaminant desorption rates under water-saturated conditions.
AB - This research investigates the mechanisms contributing to the slow desorption of hydrophobic organic compounds from water-saturated mineral solids. The mechanisms investigated were adsorption-retarded aqueous diffusion, micropore diffusion, high-energy micropore adsorption, and micropore blockage by precipitated minerals. To reduce the potential confounding effects of adsorbent heterogeneity, a set of homogeneous silica gel and glass bead adsorbents were used in the investigation. Desorption rates for the slow-desorbing fractions of chloroform [CF), trichloroethylene (TCE), and perchloroethylene (PCE) from silica gel did not conform to the pore-diffusion model for adsorption-retarded aqueous diffusion. This indicated that diffusion through adsorbent mesopores was not responsible for slow desorption from silica gel. Micropore-diffusion modeling of TCE desorption from three silica gels and microporous glass beads indicated that pores less than 2 nm in diameter were responsible for slow desorption. Desorption rates for CF, TCE, and PCE from silica gel were also measured in methanol solutions. Under methanol extraction conditions, desorption rates for all three compounds were 1-2 orders of magnitude less than under watersaturated conditions. This indicated that high-energy adsorption was not responsible for the slow-desorbing fraction, and suggested that mineral precipitation leads to blockage of intragranular micropores. The activation energy for TCE desoration from water-saturated silica gel was measured using temperature-programmed desorption. The TCE desorption activation energy of 15 kJ/mol was close to the dissolution enthalpy for silica gel of 13 kJ/mol. This supported the hypothesis that micropore blockage by precipitated minerals may be limiting contaminant desorption rates under water-saturated conditions.
UR - http://www.scopus.com/inward/record.url?scp=0033561073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033561073&partnerID=8YFLogxK
U2 - 10.1021/es980732f
DO - 10.1021/es980732f
M3 - Article
AN - SCOPUS:0033561073
SN - 0013-936X
VL - 33
SP - 1237
EP - 1243
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 8
ER -