Abstract
Ytterbium (Yb3+)-doped materials have been widely used for high efficiency high energy laser sources at the 1 µm wavelength region because of their very low quantum defect and the unique simple energy level structure of Yb3+, resulting in no excited-state absorption and low occurrence probability of deleterious ion-ion interaction processes. It has been generally recognized that these ion-ion interaction processes have very little influence on the operation of Yb3+-doped fiber lasers at low and moderate power levels. However, our recent study shows that the performance of Yb3+-doped fiber amplifiers operating at low power levels is still influenced by the ion-ion interaction processes due to the large amount of population at the upper laser level 2F5/2. In this paper, experimental evidences of the ion-ion interaction effects in Yb3+-doped fiber amplifiers are presented and a new model including these effects is developed for the numerical simulation. Our experimental and numerical investigations on the 976 nm and 1030 nm Yb3+-doped silica and phosphate fiber amplifiers show that ion-ion interaction has non-negligible impact on the performance of Yb3+-doped fiber amplifiers indeed, and compared to Yb3+-doped silica fibers, Yb3+-doped phosphate fibers suffer much less from the ion-ion interaction effects due to the much less clustered ions.
Original language | English (US) |
---|---|
Pages (from-to) | 28179-28193 |
Number of pages | 15 |
Journal | Optics Express |
Volume | 27 |
Issue number | 20 |
DOIs | |
State | Published - Sep 30 2019 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics