Investigation of flight dynamics and automatic controls for hovering micro air vehicles

Damien Poinsot, Caroline Bérard, Roman Krashanitsa, Sergey Shkarayev

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations


The present work describes the development of an automatic control system and the investigation of the flight dynamics of fixed-wing micro air vehicles (MAVs) with vertical take-off and landing (VTOL) capabilities. Specifically, the hovering phase of the flight was studied in detail. A state-space model was formulated and used in a control law design. The effects of propeller slip stream impinging on the airframe are discussed in the context of control design. Feedback control laws based on a proportional, integral, and derivative (PID) control design were developed and programmed into the autopilot. The development and evaluation of two VTOL MAVs with wingspans of 65 and 31 cm are presented. A number of test flights of vehicles with attitude stabilization and altitude hold were conducted with telemetry acquisition. Despite the difference in size, similarities were noted in the dynamic response for both aircraft. The actuation delays in the propulsion systems caused a systematic error in an altitude. Average amplitudes of rotational oscillations in all three axes were also about the same for both aircraft. Higher roll rates can be explained by lower inertia in roll axis.

Original languageEnglish (US)
Title of host publicationAIAA Guidance, Navigation and Control Conference and Exhibit
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781563479458
StatePublished - 2008

Publication series

NameAIAA Guidance, Navigation and Control Conference and Exhibit

ASJC Scopus subject areas

  • Aerospace Engineering
  • Control and Systems Engineering


Dive into the research topics of 'Investigation of flight dynamics and automatic controls for hovering micro air vehicles'. Together they form a unique fingerprint.

Cite this