TY - JOUR
T1 - Investigating the influence of temperature and seawater δ18O on Donax obesulus (Reeve, 1854) shell δ18O
AU - Warner, Jacob P.
AU - DeLong, Kristine L.
AU - Chicoine, David
AU - Thirumalai, Kaustubh
AU - Andrus, C. Fred T.
N1 - Funding Information:
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this research. We would like to thank our funding sources, the National Science Foundation (Award #1805702), and the Department of the Interior South Central Climate Adaptation Science Center Cooperative Agreement G15AP00136 for supporting this research. We thank Chris Maupin, Alan Wanamaker, Becky H. Plaisance, and LSU's Paleoclimate and Anthropological Studies (PAST) lab student workers for their contributions to this project. We also thank Yofre Villa Real for his assistance in collecting specimens. We would also like to thank Donna Surge, an anonymous reviewer, and editor Michael E. Boettcher for their comments and suggestions.
Funding Information:
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this research. We would like to thank our funding sources, the National Science Foundation (Award #1805702), and the Department of the Interior South Central Climate Adaptation Science Center Cooperative Agreement G15AP00136 for supporting this research. We thank Chris Maupin, Alan Wanamaker, Becky H. Plaisance, and LSU's Paleoclimate and Anthropological Studies (PAST) lab student workers for their contributions to this project. We also thank Yofre Villa Real for his assistance in collecting specimens. We would also like to thank Donna Surge, an anonymous reviewer, and editor Michael E. Boettcher for their comments and suggestions.
Publisher Copyright:
© 2021 The Author(s)
PY - 2022/1/20
Y1 - 2022/1/20
N2 - The coastline of Peru lacks long-lived marine organisms useful for paleoclimatic reconstructions generating a need for novel archives. Short-lived (<5 years) bivalves are commonly found in geological and archaeological deposits and thus can provide “snapshots” of past climatic variability (i.e., seasonal range), similar to data obtained by individual foraminifera analysis, rather than continuous, cross-dated time series (e.g., trees and corals). Previous studies have found success using the short-lived intertidal clam Mesodesma donacium. However, M. donacium are vulnerable to die-offs from the warmer sea surface temperatures (SST) associated with El Niño events and are functionally extinct in northern Peru thus limiting the possibility of modern analog studies for that region. Here we investigate the short-lived (1–3 years) surf clam, Donax obesulus, commonly found in northern Peru, as a paleoclimate archive. Donax obesulus populations are able to survive the warmer SSTs present during El Niño years although they are vulnerable to colder SSTs associated with La Niñas. We assessed the environmental drivers underlying subannual δ18O variability in D. obesulus from live collected shells from fish markets and coastal beaches near the Nepeña Valley, Peru in 2012 (La Niña), 2014 (ENSO-neutral), and 2016 (El Niño). Forward modeling of pseudo-shell δ18O reveals that SST variations are a dominant driver with secondary contributions from seasonally-varying seawater δ18O (δ18Osw). By accounting for varying δ18Osw, we isolated the temperature dependent variable resulting in a paleotemperature equation for D. obesulus δ18O. We verified our results with the δ18O record of a D. obesulus shell collected in 2006. Our results suggest that the paleotemperature equation we developed is useful for reconstructing El Niño-Southern Oscillation (ENSO)-related climatic variations in this region and the pseudo-shell approach may be useful for understanding shell δ18O in other locations.
AB - The coastline of Peru lacks long-lived marine organisms useful for paleoclimatic reconstructions generating a need for novel archives. Short-lived (<5 years) bivalves are commonly found in geological and archaeological deposits and thus can provide “snapshots” of past climatic variability (i.e., seasonal range), similar to data obtained by individual foraminifera analysis, rather than continuous, cross-dated time series (e.g., trees and corals). Previous studies have found success using the short-lived intertidal clam Mesodesma donacium. However, M. donacium are vulnerable to die-offs from the warmer sea surface temperatures (SST) associated with El Niño events and are functionally extinct in northern Peru thus limiting the possibility of modern analog studies for that region. Here we investigate the short-lived (1–3 years) surf clam, Donax obesulus, commonly found in northern Peru, as a paleoclimate archive. Donax obesulus populations are able to survive the warmer SSTs present during El Niño years although they are vulnerable to colder SSTs associated with La Niñas. We assessed the environmental drivers underlying subannual δ18O variability in D. obesulus from live collected shells from fish markets and coastal beaches near the Nepeña Valley, Peru in 2012 (La Niña), 2014 (ENSO-neutral), and 2016 (El Niño). Forward modeling of pseudo-shell δ18O reveals that SST variations are a dominant driver with secondary contributions from seasonally-varying seawater δ18O (δ18Osw). By accounting for varying δ18Osw, we isolated the temperature dependent variable resulting in a paleotemperature equation for D. obesulus δ18O. We verified our results with the δ18O record of a D. obesulus shell collected in 2006. Our results suggest that the paleotemperature equation we developed is useful for reconstructing El Niño-Southern Oscillation (ENSO)-related climatic variations in this region and the pseudo-shell approach may be useful for understanding shell δ18O in other locations.
KW - Bivalve Mollusk
KW - ENSO
KW - Oxygen Isotopes
KW - Peru
KW - Sclerochronology
UR - http://www.scopus.com/inward/record.url?scp=85119909707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119909707&partnerID=8YFLogxK
U2 - 10.1016/j.chemgeo.2021.120638
DO - 10.1016/j.chemgeo.2021.120638
M3 - Article
AN - SCOPUS:85119909707
SN - 0009-2541
VL - 588
JO - Chemical Geology
JF - Chemical Geology
M1 - 120638
ER -