TY - JOUR
T1 - Invalidation of dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) as SARS-CoV-2 main protease inhibitors and the discovery of PGG as a papain-like protease inhibitor
AU - Tan, Haozhou
AU - Ma, Chunlong
AU - Wang, Jun
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/7
Y1 - 2022/7
N2 - The COVID-19 pandemic spurred a broad interest in antiviral drug discovery. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are attractive antiviral drug targets given their vital roles in viral replication and modulation of host immune response. Structurally disparate compounds were reported as Mpro and PLpro inhibitors from either drug repurposing or rational design. Two polyphenols dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) were recently reported as SARS-CoV-2 Mpro inhibitors. With our continuous interest in studying the mechanism of inhibition and resistance of Mpro inhibitors, we report herein our independent validation/invalidation of these two natural products. Our FRET-based enzymatic assay showed that neither dieckol nor PGG inhibited SARS-CoV-2 Mpro (IC50 > 20 µM), which is in contrary to previous reports. Serendipitously, PGG was found to inhibit the SARS-CoV-2 PLpro with an IC50 of 3.90 µM. The binding of PGG to PLpro was further confirmed in the thermal shift assay. However, PGG was cytotoxic in 293T-ACE2 cells (CC50 = 7.7 µM), so its intracellular PLpro inhibitory activity could not be quantified by the cell-based Flip-GFP PLpro assay. In addition, we also invalidated ebselen, disulfiram, carmofur, PX12, and tideglusib as SARS-CoV-2 PLpro inhibitors using the Flip-GFP assay. Overall, our results call for stringent hit validation, and the serendipitous discovery of PGG as a putative PLpro inhibitor might worth further pursuing. [Figure not available: see fulltext.]
AB - The COVID-19 pandemic spurred a broad interest in antiviral drug discovery. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are attractive antiviral drug targets given their vital roles in viral replication and modulation of host immune response. Structurally disparate compounds were reported as Mpro and PLpro inhibitors from either drug repurposing or rational design. Two polyphenols dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) were recently reported as SARS-CoV-2 Mpro inhibitors. With our continuous interest in studying the mechanism of inhibition and resistance of Mpro inhibitors, we report herein our independent validation/invalidation of these two natural products. Our FRET-based enzymatic assay showed that neither dieckol nor PGG inhibited SARS-CoV-2 Mpro (IC50 > 20 µM), which is in contrary to previous reports. Serendipitously, PGG was found to inhibit the SARS-CoV-2 PLpro with an IC50 of 3.90 µM. The binding of PGG to PLpro was further confirmed in the thermal shift assay. However, PGG was cytotoxic in 293T-ACE2 cells (CC50 = 7.7 µM), so its intracellular PLpro inhibitory activity could not be quantified by the cell-based Flip-GFP PLpro assay. In addition, we also invalidated ebselen, disulfiram, carmofur, PX12, and tideglusib as SARS-CoV-2 PLpro inhibitors using the Flip-GFP assay. Overall, our results call for stringent hit validation, and the serendipitous discovery of PGG as a putative PLpro inhibitor might worth further pursuing. [Figure not available: see fulltext.]
KW - Antiviral
KW - Coronavirus
KW - Main protease
KW - Papain-like protease
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85129852632&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129852632&partnerID=8YFLogxK
U2 - 10.1007/s00044-022-02903-0
DO - 10.1007/s00044-022-02903-0
M3 - Article
AN - SCOPUS:85129852632
SN - 1054-2523
VL - 31
SP - 1147
EP - 1153
JO - Medicinal Chemistry Research
JF - Medicinal Chemistry Research
IS - 7
ER -