Abstract
Under acidic sol-gel polymerization conditions, 1,3-bis(triethoxysilyl)-propane 1 and 1,4-bis(triethoxysilyl)butane 2 were shown to preferentially form cyclic disilsesquioxanes 3 and 4 rather than the expected 1,3-propylene- and 1,4-butylene-bridged polysilsesquioxane gels. Formation of 3 and 4 is driven by a combination of an intramolecular cyclization to six and seven membered rings, and a pronounced reduction in reactivity under acidic conditions as a function of increasing degree of condensation. The ease with which these relatively unreactive cyclic monomers and dimers are formed (under acidic conditions) helps to explain the difficulties in forming gels from 1 and 2. The stability of cyclic disilsesquioxanes was confirmed with the synthesis of 3 and 4 in gram quantities; the cyclic disilsesquioxanes react slowly to give tricyclic dimers containing a thermodynamically stable eight membered siloxane ring. Continued reactions were shown to preserve the cyclic structure, opening up the possibility of utilizing cyclic disilsesquioxanes as sol-gel monomers. Preliminary polymerization studies with these new, carbohydrate-like monomers revealed the formation of network poly(cyclic disilsesquioxanes) under acidic conditions and polymerization with ring-opening under basic conditions.
Original language | English (US) |
---|---|
Pages (from-to) | 33-41 |
Number of pages | 9 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 435 |
State | Published - 1996 |
Externally published | Yes |
Event | Proceedings of the 1996 MRS Spring Symposium - San Francisco, CA, USA Duration: Apr 8 1996 → Apr 12 1996 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering