Interproton Coupling over Five Bonds 5J(H—Cα—C(O)—N—Cα—H) in the Peptide Moiety: The Importance of Specific Association Effects

M. Barfield, F. A. Al-Obeidi, V. J. Hruby, S. R. Walter

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

An experimental and theoretical study is presented of the conformational and solvent dependencies of long-range H—H coupling constants 5J(H—Cα—C(O)—N—Cα—H) in compounds which model the peptide backbone. Molecular orbital results for Fermi contact coupling in cis- and trans-N-methylacetamides do not follow a conformational dependence of the homoallylic type; negative values are predicted for most out-of-plane orientations of the Cα—H bonds. In addition, the calculated values for 5JHIH′cis and 5JHIH′trans are of opposite signs in the planar conformation of cyclo-(Gly-Gly) and the boat conformation of cyclo-(Gly-Tyr). However, relative sign measurements show that these two coupling constants are of the same sign in cyclo(Gly-Tyr), and that both are positive in cyclo-(Gly-Phgly). The inclusion of five water molecules in the MO calculations for cis-N-methylacetamide and ten water molecules in association with cyclo-(Gly-Gly) led to both positive 5JHIH′cis and 5JHIH′trans. As a consequence, any applicability of the empirical relationship of 5J(H—Cα—C(O—N—Cα—H) to ϕ and ψ angles in peptides does not have any theoretical basis in the molecular oribtal theory for unhydrated amide bonds.

Original languageEnglish (US)
Pages (from-to)3302-3306
Number of pages5
JournalJournal of the American Chemical Society
Volume104
Issue number12
DOIs
StatePublished - 1982
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Interproton Coupling over Five Bonds 5J(H—Cα—C(O)—N—Cα—H) in the Peptide Moiety: The Importance of Specific Association Effects'. Together they form a unique fingerprint.

Cite this