Interplanetary human exploration enabled by lunar swingbys and libration-point orbits

David W. Dunham, Robert W. Farquhar, Sergey Aksenov, Yulia Fedorenko, Roberto Furfaro, John Kidd

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

International collaboration will be necessary for a viable program of exploration beyond the Moon, similar to that for the ISS, and reusable spacecraft will also be needed. High-energy Earth orbits that can be drastically modified with lunar swingbys and small propulsive maneuvers are used, especially near the collinear Sun-Earth and Earth-Moon libration points. The first human missions beyond low-Earth orbit may go to the vicinity of the translunar Earth-Moon libration point. This paper will concentrate on the next possible step, the first one into interplanetary space, that could be a one-year return mission to fly by a Near-Earth Object (NEO). Details are presented of a trajectory that leaves a halo orbit about the Earth-Moon L2 libration point, then uses three lunar swingbys and relatively small propulsive maneuvers to fly by the asteroid 1994 XL1, and return to the Earth-Moon L2 halo orbit for a ΔV of only 432 m/s. Next, rendezvous missions to some other NEO's will be presented. Finally, trajectories to reach Mars, first to Phobos or Deimos, will be outlined. The study uses highly-elliptical Earth orbits (HEOs) whose line of apsides can be rotated using lunar swingbys. The HEO provides a convenient and relatively fast location for rendezvous with crew, or to add propulsion or cargo modules, a technique that we call "Phasing Orbit Rendezvous".

Original languageEnglish (US)
Title of host publicationAIAA/AAS Astrodynamics Specialist Conference 2014
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781624103087
DOIs
StatePublished - 2014
EventAIAA/AAS Astrodynamics Specialist Conference 2014 - San Diego, CA, United States
Duration: Aug 4 2014Aug 7 2014

Publication series

NameAIAA/AAS Astrodynamics Specialist Conference 2014

Other

OtherAIAA/AAS Astrodynamics Specialist Conference 2014
Country/TerritoryUnited States
CitySan Diego, CA
Period8/4/148/7/14

ASJC Scopus subject areas

  • Aerospace Engineering
  • Astronomy and Astrophysics

Fingerprint

Dive into the research topics of 'Interplanetary human exploration enabled by lunar swingbys and libration-point orbits'. Together they form a unique fingerprint.

Cite this