TY - JOUR
T1 - Interactive Effects of Vegetation Type and Topographic Position on Nitrogen Availability and Loss in a Temperate Montane Ecosystem
AU - Weintraub, Samantha R.
AU - Brooks, Paul D.
AU - Bowen, Gabriel J.
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Determining the fate of deposited nitrogen (N) in natural ecosystems remains a challenge. Heterogeneity of vegetation types and resulting plant–soil feedbacks interact with topo-hydrologic gradients to mediate spatial patterns of N availability and loss, yet net effects of variation in these two factors together across complex terrain remain unclear. Here we measured a suite of N-cycle pools and fluxes in sites that differed factorially in vegetation type (mixed forest vs. herbaceous) and topographic position (upslope vs. downslope) in a protected montane watershed near Salt Lake City, UT. Vegetation type was associated with large variation in N availability—herbaceous sites had larger NO3 − pools, higher NO3 −:NH4 + ratios, higher nitrification potentials, lower soil C:N values, enriched δ15N values, and lower microbial biomass compared to forests, especially those upslope. Downslope sites tended to exhibit higher N availability and indicators of N-cycle openness, but patterns were moderated by vegetation type. In downslope forest, soil NO3 − depth profiles and higher foliar N content suggested trees were accessing deep soil N and transferring it to the surface via litterfall, while more deep soil NO3 − but no change in surface or foliar N suggested herbaceous cover was not N limited or deeper N pools were not accessible. Soil NO3 − leaching from below the rooting zone closely tracked N availability, revealing a link between N status and hydrologic loss as well as an important role for roots in N retention. NO3 − isotopes did not reveal a similar link for gaseous losses (that is, denitrification), instead reflecting nitrification and/or transport dynamics. Together, these results suggest a coupled ecological, topo-hydrologic perspective can help assess the fate of N in complex landscapes.
AB - Determining the fate of deposited nitrogen (N) in natural ecosystems remains a challenge. Heterogeneity of vegetation types and resulting plant–soil feedbacks interact with topo-hydrologic gradients to mediate spatial patterns of N availability and loss, yet net effects of variation in these two factors together across complex terrain remain unclear. Here we measured a suite of N-cycle pools and fluxes in sites that differed factorially in vegetation type (mixed forest vs. herbaceous) and topographic position (upslope vs. downslope) in a protected montane watershed near Salt Lake City, UT. Vegetation type was associated with large variation in N availability—herbaceous sites had larger NO3 − pools, higher NO3 −:NH4 + ratios, higher nitrification potentials, lower soil C:N values, enriched δ15N values, and lower microbial biomass compared to forests, especially those upslope. Downslope sites tended to exhibit higher N availability and indicators of N-cycle openness, but patterns were moderated by vegetation type. In downslope forest, soil NO3 − depth profiles and higher foliar N content suggested trees were accessing deep soil N and transferring it to the surface via litterfall, while more deep soil NO3 − but no change in surface or foliar N suggested herbaceous cover was not N limited or deeper N pools were not accessible. Soil NO3 − leaching from below the rooting zone closely tracked N availability, revealing a link between N status and hydrologic loss as well as an important role for roots in N retention. NO3 − isotopes did not reveal a similar link for gaseous losses (that is, denitrification), instead reflecting nitrification and/or transport dynamics. Together, these results suggest a coupled ecological, topo-hydrologic perspective can help assess the fate of N in complex landscapes.
KW - nitrate leaching
KW - plant–soil interactions
KW - soil nitrogen
KW - topographic wetness
UR - http://www.scopus.com/inward/record.url?scp=85007240951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007240951&partnerID=8YFLogxK
U2 - 10.1007/s10021-016-0094-8
DO - 10.1007/s10021-016-0094-8
M3 - Article
AN - SCOPUS:85007240951
SN - 1432-9840
VL - 20
SP - 1073
EP - 1088
JO - Ecosystems
JF - Ecosystems
IS - 6
ER -