Abstract
The Gauss-Codazzi equations imposed on the elements of the first and the second quadratic forms of a surface embedded in ℝ3 are integrable by the dressing method. This method allows constructing classes of Combescure-equivalent surfaces with the same "rotation coefficients." Each equivalence class is defined by a function of two variables ("master function of a surface"). Each class of Combescure-equivalent surfaces includes the sphere. Different classes of surfaces define different systems of orthogonal coordinates of the sphere. The simplest class (with the master function zero) corresponds to the standard spherical coordinates.
Original language | English (US) |
---|---|
Pages (from-to) | 946-956 |
Number of pages | 11 |
Journal | Theoretical and Mathematical Physics |
Volume | 128 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2001 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics