Integrated photonic-based coronagraphic systems for future space telescopes

Niyati Desai, Lorenzo König, Emiel Por, Roser Juanola-Parramon, Ruslan Belikov, Iva Laginja, Olivier Guyon, Laurent Pueyo, Kevin Fogarty, Olivier Absil, Lisa Altinier, Pierre Baudoz, Alexis Bidot, Markus Johannes Bonse, Kimberly Bott, Bernhard Brandl, Alexis Carlotti, Sarah L. Casewell, Elodie Choquet, Nicolas B. CowanDavid Doelman, J. Fowler, Timothy D. Gebhard, Yann Gutierrez, Sebastiaan Y. Haffert, Olivier Herscovici-Schiller, Adrien Hours, Matthew Kenworthy, Elina Kleisioti, Mariya Krasteva, Rico Landman, Lucie Leboulleux, Johan Mazoyer, Maxwell A. Millar-Blanchaer, David Mouillet, Mamadou N’Diaye, Frans Snik, Dirk van Dam, Kyle van Gorkom, Maaike van Kooten, Sophia R. Vaughan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 1010 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.

Original languageEnglish (US)
Title of host publicationTechniques and Instrumentation for Detection of Exoplanets XI
EditorsGarreth J. Ruane
PublisherSPIE
ISBN (Electronic)9781510665743
DOIs
StatePublished - 2023
EventTechniques and Instrumentation for Detection of Exoplanets XI 2023 - San Diego, United States
Duration: Aug 21 2023Aug 24 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12680
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceTechniques and Instrumentation for Detection of Exoplanets XI 2023
Country/TerritoryUnited States
CitySan Diego
Period8/21/238/24/23

Keywords

  • High-contrast imaging
  • coronagraph
  • exoplanets
  • instrumentation
  • photonics

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Integrated photonic-based coronagraphic systems for future space telescopes'. Together they form a unique fingerprint.

Cite this