Integrated Guidance and Control for Lunar Landing using a Stabilized Seeker

Brian Gaudet, Roberto Furfaro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We develop an integrated guidance and control system that in conjunction with a stabilized seeker and landing site detection software can achieve precise and safe planetary landing. The seeker tracks the designated landing site by adjusting seeker elevation and azimuth angles to center the designated landing site in the sensor field of view. The seeker angles, closing speed, and range to the designated landing site are used to formulate a velocity field that is used by the guidance and control system to achieve a safe landing at the designated landing site. The guidance and control system maps this velocity field, attitude, and rotational velocity directly to a commanded thrust vector for the lander’s four engines. The guidance and control system is implemented as a policy optimized using reinforcement meta learning. We demonstrate that the guidance and control system is compatible with multiple diverts during the powered descent phase, and is robust to seeker lag, actuator lag and degradation, and center of mass variation induced by fuel consumption. We outline several concepts of operations, including an approach using a preplaced landing beacon.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum 2022
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106316
DOIs
StatePublished - 2022
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022 - San Diego, United States
Duration: Jan 3 2022Jan 7 2022

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Country/TerritoryUnited States
CitySan Diego
Period1/3/221/7/22

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Integrated Guidance and Control for Lunar Landing using a Stabilized Seeker'. Together they form a unique fingerprint.

Cite this