TY - JOUR
T1 - Integrated gallium phosphide nonlinear photonics
AU - Wilson, Dalziel J.
AU - Schneider, Katharina
AU - Hönl, Simon
AU - Anderson, Miles
AU - Baumgartner, Yannick
AU - Czornomaz, Lukas
AU - Kippenberg, Tobias J.
AU - Seidler, Paul
N1 - Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Gallium phosphide (GaP) is an indirect-bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties—including large χ(2) and χ(3) coefficients, a high refractive index (>3) and transparency from visible to long-infrared wavelengths (0.55–11 μm)—its application as an integrated photonics material has been little studied. Here, we introduce GaP-on-insulator as a platform for nonlinear photonics, exploiting a direct wafer-bonding approach to realize integrated waveguides with 1.2 dB cm−1 loss in the telecommunications C-band (on par with Si-on-insulator). High-quality (Q > 105), grating-coupled ring resonators are fabricated and studied. Employing a modulation transfer approach, we obtain a direct experimental estimate of the nonlinear index of GaP at telecommunication wavelengths: n2 = 1.1(3) × 10−17 m2 W−1. We also observe Kerr frequency comb generation in resonators with engineered dispersion. Parametric threshold powers as low as 3 mW are realized, followed by broadband (>100 nm) frequency combs with sub-THz spacing, frequency-doubled combs and, in a separate device, efficient Raman lasing. These results signal the emergence of GaP-on-insulator as a novel platform for integrated nonlinear photonics.
AB - Gallium phosphide (GaP) is an indirect-bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties—including large χ(2) and χ(3) coefficients, a high refractive index (>3) and transparency from visible to long-infrared wavelengths (0.55–11 μm)—its application as an integrated photonics material has been little studied. Here, we introduce GaP-on-insulator as a platform for nonlinear photonics, exploiting a direct wafer-bonding approach to realize integrated waveguides with 1.2 dB cm−1 loss in the telecommunications C-band (on par with Si-on-insulator). High-quality (Q > 105), grating-coupled ring resonators are fabricated and studied. Employing a modulation transfer approach, we obtain a direct experimental estimate of the nonlinear index of GaP at telecommunication wavelengths: n2 = 1.1(3) × 10−17 m2 W−1. We also observe Kerr frequency comb generation in resonators with engineered dispersion. Parametric threshold powers as low as 3 mW are realized, followed by broadband (>100 nm) frequency combs with sub-THz spacing, frequency-doubled combs and, in a separate device, efficient Raman lasing. These results signal the emergence of GaP-on-insulator as a novel platform for integrated nonlinear photonics.
UR - http://www.scopus.com/inward/record.url?scp=85075459478&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075459478&partnerID=8YFLogxK
U2 - 10.1038/s41566-019-0537-9
DO - 10.1038/s41566-019-0537-9
M3 - Article
AN - SCOPUS:85075459478
SN - 1749-4885
VL - 14
SP - 57
EP - 62
JO - Nature Photonics
JF - Nature Photonics
IS - 1
ER -