Abstract
Microglial activation and overproduction of inflammatory mediators in the central nervous system (CNS) have been implicated in Alzheimer's disease (AD). Elevated levels of the pro-inflammatory cytokine tumor necrosis factor (TNF) have been reported in serum and post-mortem brains of patients with AD, but its role in progression of AD is unclear. Using novel engineered dominant negative TNF inhibitors (DN-TNFs) selective for soluble TNF (solTNF), we investigated whether blocking TNF signaling with chronic infusion of the recombinant DN-TNF XENP345 or a single injection of a lentivirus encoding DN-TNF prevented the acceleration of AD-like pathology induced by chronic systemic inflammation in 3xTgAD mice. We found that chronic inhibition of solTNF signaling with either approach decreased the LPS-induced accumulation of 6E10-immunoreactive protein in hippocampus, cortex, and amygdala. Immunohistological and biochemical approaches using a C-terminal APP antibody indicated that a major fraction of the accumulated protein was likely to be C-terminal APP fragments (β-CTF) while a minor fraction consisted of Aβ40 and 42. Genetic inactivation of TNFR1-mediated TNF signaling in 3xTgAD mice yielded similar results. Taken together, our studies indicate that soluble TNF is a critical mediator of the effects of neuroinflammation on early (pre-plaque) pathology in 3xTgAD mice. Targeted inhibition of solTNF in the CNS may slow the appearance of amyloid-associated pathology, cognitive deficits, and potentially the progressive loss of neurons in AD.
Original language | English (US) |
---|---|
Pages (from-to) | 163-177 |
Number of pages | 15 |
Journal | Neurobiology of Disease |
Volume | 34 |
Issue number | 1 |
DOIs | |
State | Published - Apr 2009 |
Keywords
- 3xTgAD
- Alzheimer's disease
- Amyloid precursor protein
- Amyloid-β
- Lentivirus
- Neuroinflammation
- Tumor necrosis factor
- β-CTF
ASJC Scopus subject areas
- Neurology