TY - JOUR
T1 - Infrared luminosity functions from the chandra deep field-south
T2 - The Spitzer view on the history of dusty star formation at 0 ≲ z ≲ 1 1
AU - Le Floc'h, Emeric
AU - Papovich, Casey
AU - Dole, Hervé
AU - Bell, Eric F.
AU - Lagache, Guilaine
AU - Rieke, George H.
AU - Egami, Eiichi
AU - Pérez-González, Pablo G.
AU - Alonso-Herrero, Almudena
AU - Rieke, Marcia J.
AU - Blaylock, Myra
AU - Engelbracht, Charles W.
AU - Gordon, Karl D.
AU - Hines, Dean C.
AU - Misselt, Karl A.
AU - Morrison, Jane E.
AU - Mould, Jeremy
PY - 2005/10/10
Y1 - 2005/10/10
N2 - We analyze a sample of ∼2600 Spitzer MIPS 24 μm sources brighter than ∼80μJy and located in the Chandra Deep Field-South to characterize the evolution of the comoving infrared (IR) energy density of the universe up to z ∼ 1. Using published ancillary optical data, we first obtain a nearly complete redshift determination for the 24 μm objects associated with R ≲ 24 mag counterparts at z ≲ 1. These sources represent ∼55%-60% of the total MIPS 24 μm population with f24 μm ≳ 80 μJy, the rest of the sample likely lying at higher redshifts. We then determine an estimate of their total IR luminosities using various libraries of IR spectral energy distributions. We find that the 24μm population at 0.5 ≲ z ≲ 1 is dominated by "luminous infrared galaxies" (i.e., 1011 L⊙ ≤ LIR ≤ 1012 L⊙), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically selected galaxies. A significant number of fainter sources (5 × 10 10 L⊙ ≤ LIR ≤ 1012 L ⊙) are also detected at similar distances. We finally derive 15 μm and total IR luminosity functions (LFs) up to z ∼ 1. In agreement with the previous results from the Infrared Space Observatory (ISO) and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with look-back time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity [ZLIR* ∝ (1 + z) 3.2_0.7 -0.2, φIR*IR ∝ (1 + z)0.7 +0.2 -0.6]. A significant steepening of the faint-end slope of the IR luminosity function is also unlikely, as it would overproduce the faint 24 μm source number counts. Our results imply that the comoving IR energy density of the universe evolves as (1 + z)3.9±0.4 up to z ∼ 1 and that galaxies luminous in the infrared (i.e., LIR ≥ 1011 L⊙) are responsible for 70% ± 15% of this energy density at z ∼ 1. Taking into account the contribution of the UV luminosity evolving as (1 + z)∼2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z ∼ 0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24 μm fluxes into luminosities.
AB - We analyze a sample of ∼2600 Spitzer MIPS 24 μm sources brighter than ∼80μJy and located in the Chandra Deep Field-South to characterize the evolution of the comoving infrared (IR) energy density of the universe up to z ∼ 1. Using published ancillary optical data, we first obtain a nearly complete redshift determination for the 24 μm objects associated with R ≲ 24 mag counterparts at z ≲ 1. These sources represent ∼55%-60% of the total MIPS 24 μm population with f24 μm ≳ 80 μJy, the rest of the sample likely lying at higher redshifts. We then determine an estimate of their total IR luminosities using various libraries of IR spectral energy distributions. We find that the 24μm population at 0.5 ≲ z ≲ 1 is dominated by "luminous infrared galaxies" (i.e., 1011 L⊙ ≤ LIR ≤ 1012 L⊙), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically selected galaxies. A significant number of fainter sources (5 × 10 10 L⊙ ≤ LIR ≤ 1012 L ⊙) are also detected at similar distances. We finally derive 15 μm and total IR luminosity functions (LFs) up to z ∼ 1. In agreement with the previous results from the Infrared Space Observatory (ISO) and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with look-back time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity [ZLIR* ∝ (1 + z) 3.2_0.7 -0.2, φIR*IR ∝ (1 + z)0.7 +0.2 -0.6]. A significant steepening of the faint-end slope of the IR luminosity function is also unlikely, as it would overproduce the faint 24 μm source number counts. Our results imply that the comoving IR energy density of the universe evolves as (1 + z)3.9±0.4 up to z ∼ 1 and that galaxies luminous in the infrared (i.e., LIR ≥ 1011 L⊙) are responsible for 70% ± 15% of this energy density at z ∼ 1. Taking into account the contribution of the UV luminosity evolving as (1 + z)∼2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z ∼ 0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24 μm fluxes into luminosities.
KW - Cosmology: observations
KW - Galaxies: evolution
KW - Galaxies: high-redshift infrared: galaxies
UR - http://www.scopus.com/inward/record.url?scp=28044460090&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=28044460090&partnerID=8YFLogxK
U2 - 10.1086/432789
DO - 10.1086/432789
M3 - Review article
AN - SCOPUS:28044460090
SN - 0004-637X
VL - 632
SP - 169
EP - 190
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1 I
ER -