TY - JOUR
T1 - Infrared light emission from π-conjugated polymers
T2 - A diagrammatic exciton basis valence bond theory
AU - Dallakyan, S.
AU - Chandross, M.
AU - Mazumdar, S.
PY - 2003
Y1 - 2003
N2 - There is currently a great need for solid-state lasers that emit in the infrared, as this is the operating wavelength regime for applications in telecommunications. Existing π-conjugated polymers all emit in the visible or ultraviolet, and whether or not π-conjugated polymers that emit in the infrared can be designed is an interesting challenge. On the one hand, the excited-state ordering in trans-polyacetylene, the π-conjugated polymer with a relatively small optical gap, is not conducive to light emission because of electron-electron interaction effects. On the other hand, excited-state ordering opposite to that in trans-polyacetylene is usually obtained by chemical modification that increases the effective bond alternation, which in turn increases the optical gap. We develop a theory of electron correlation effects in a model π-conjugated polymer that is obtained by replacing the hydrogen atoms of trans-polyacetylene with transverse conjugated groups and show that the effective on-site correlation in this system is smaller than the bare correlation in the unsubstituted system. An optical gap in the infrared as well as excited-state ordering conducive to light emission is thereby predicted with similar structural features.
AB - There is currently a great need for solid-state lasers that emit in the infrared, as this is the operating wavelength regime for applications in telecommunications. Existing π-conjugated polymers all emit in the visible or ultraviolet, and whether or not π-conjugated polymers that emit in the infrared can be designed is an interesting challenge. On the one hand, the excited-state ordering in trans-polyacetylene, the π-conjugated polymer with a relatively small optical gap, is not conducive to light emission because of electron-electron interaction effects. On the other hand, excited-state ordering opposite to that in trans-polyacetylene is usually obtained by chemical modification that increases the effective bond alternation, which in turn increases the optical gap. We develop a theory of electron correlation effects in a model π-conjugated polymer that is obtained by replacing the hydrogen atoms of trans-polyacetylene with transverse conjugated groups and show that the effective on-site correlation in this system is smaller than the bare correlation in the unsubstituted system. An optical gap in the infrared as well as excited-state ordering conducive to light emission is thereby predicted with similar structural features.
UR - http://www.scopus.com/inward/record.url?scp=18344410805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18344410805&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.68.075204
DO - 10.1103/PhysRevB.68.075204
M3 - Article
AN - SCOPUS:18344410805
SN - 1098-0121
VL - 68
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 7
ER -