TY - JOUR
T1 - Influence of J series prostaglandins on apoptosis and tumorigenesis of breast cancer cells
AU - Clay, Carl E.
AU - Namen, Andrew M.
AU - Atsumi, Gen Ichi
AU - Willingham, Mark C.
AU - High, Kevin P.
AU - Kute, Timothy E.
AU - Trimboli, Anthony J.
AU - Fonteh, Alfred N.
AU - Dawson, Paul A.
AU - Chilton, Floyd H.
PY - 1999
Y1 - 1999
N2 - This study was undertaken to investigate the influence of the peroxisome proliferator-activated receptor γ (PPARγ) agonists on the proliferation, apoptosis and tumorigenesis of breast cancer cells. PPARγ investigation has been largely restricted to adipose tissue, where it plays a key role in differentiation, but recent data reveal that PPARγ is expressed in several transformed cells. However, the function of PPARγ activation in neoplastic cells is unclear. Activation of PPARγ with the known prostanoid agonist 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) or the thiazolidinedione (TZD) agonist troglitazone (TGZ) attenuated cellular proliferation of the estrogen receptor-negative breast cancer cell line MDA-MB-231, as well as the estrogen receptor-positive breast cancer cell line MCF-7. This was marked by a decrease in total cell number and by an inhibition of cell cycle progression. Addition of 15dPGJ2 was not associated with an increase in cellular differentiation, as has been seen in other neoplastic cells, but rather induction of cellular events associated with programmed cell death, apoptosis. Video time-lapse microscopy revealed that 15dPGJ2 induced morphological changes associated with apoptosis, including cellular rounding, blebbing, the production of echinoid spikes, blistering and cell lysis. In contrast, TGZ caused only a modest induction of apoptosis. These results were verified by histochemistry using the specific DNA stain DAPI to observe nuclear condensation, a marker of apoptosis. Finally, a brief exposure of MDA-MB-231 cells to 15dPGJ2 initiated an irreversible apoptotic pathway that inhibited the growth of tumors in a nude mouse model. These findings illustrate that induction of apoptosis may be the primary biological response resulting from PPARγ activation in some breast cancer cells and further suggests a potential role for PPARγ ligands for the treatment of breast cancer.
AB - This study was undertaken to investigate the influence of the peroxisome proliferator-activated receptor γ (PPARγ) agonists on the proliferation, apoptosis and tumorigenesis of breast cancer cells. PPARγ investigation has been largely restricted to adipose tissue, where it plays a key role in differentiation, but recent data reveal that PPARγ is expressed in several transformed cells. However, the function of PPARγ activation in neoplastic cells is unclear. Activation of PPARγ with the known prostanoid agonist 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) or the thiazolidinedione (TZD) agonist troglitazone (TGZ) attenuated cellular proliferation of the estrogen receptor-negative breast cancer cell line MDA-MB-231, as well as the estrogen receptor-positive breast cancer cell line MCF-7. This was marked by a decrease in total cell number and by an inhibition of cell cycle progression. Addition of 15dPGJ2 was not associated with an increase in cellular differentiation, as has been seen in other neoplastic cells, but rather induction of cellular events associated with programmed cell death, apoptosis. Video time-lapse microscopy revealed that 15dPGJ2 induced morphological changes associated with apoptosis, including cellular rounding, blebbing, the production of echinoid spikes, blistering and cell lysis. In contrast, TGZ caused only a modest induction of apoptosis. These results were verified by histochemistry using the specific DNA stain DAPI to observe nuclear condensation, a marker of apoptosis. Finally, a brief exposure of MDA-MB-231 cells to 15dPGJ2 initiated an irreversible apoptotic pathway that inhibited the growth of tumors in a nude mouse model. These findings illustrate that induction of apoptosis may be the primary biological response resulting from PPARγ activation in some breast cancer cells and further suggests a potential role for PPARγ ligands for the treatment of breast cancer.
UR - http://www.scopus.com/inward/record.url?scp=0032884254&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032884254&partnerID=8YFLogxK
U2 - 10.1093/carcin/20.10.1905
DO - 10.1093/carcin/20.10.1905
M3 - Article
C2 - 10506103
AN - SCOPUS:0032884254
SN - 0143-3334
VL - 20
SP - 1905
EP - 1911
JO - Carcinogenesis
JF - Carcinogenesis
IS - 10
ER -