Inferring the past: a combined CNN-LSTM deep learning framework to fuse satellites for historical inundation mapping

Jonathan Giezendanner, Rohit Mukherjee, Matthew Purri, Mitchell Thomas, Max Mauerman, A. K.M.Saiful Islam, Beth Tellman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Mapping floods using satellite data is crucial for managing and mitigating flood risks. Satellite imagery enables rapid and accurate analysis of large areas, providing critical information for emergency response and disaster management. Historical flood data derived from satellite imagery can inform long-term planning, risk management strategies, and insurance-related decisions. The Sentinel-1 satellite is effective for flood detection, but for longer time series, other satellites such as MODIS can be used in combination with deep learning models to accurately identify and map past flood events. We here develop a combined CNN-LSTM deep learning framework to fuse Sentinel-1 derived fractional flooded area with MODIS data in order to infer historical floods over Bangladesh. The results show how our framework outperforms a CNN-only approach and takes advantage of not only space, but also time in order to predict the fractional inundated area. The model is applied to historical MODIS data to infer the past 20 years of inundation extents over Bangladesh and compared to a thresholding algorithm and a physical model. Our fusion model outperforms both models in consistency and capacity to predict peak inundation extents.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
PublisherIEEE Computer Society
Pages2155-2165
Number of pages11
ISBN (Electronic)9798350302493
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Canada
Duration: Jun 18 2023Jun 22 2023

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2023-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Country/TerritoryCanada
CityVancouver
Period6/18/236/22/23

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Inferring the past: a combined CNN-LSTM deep learning framework to fuse satellites for historical inundation mapping'. Together they form a unique fingerprint.

Cite this