TY - JOUR
T1 - Inelastic neutron scattering study of hydrogen in d8 -THF D2 O ice clathrate
AU - Tait, Kimberly T.
AU - Trouw, Frans
AU - Zhao, Yusheng
AU - Brown, Craig M.
AU - Downs, Robert T.
N1 - Funding Information:
The authors thank Timothy Jenkins for his help which enabled the experiment at NIST. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy’s Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672.
PY - 2007
Y1 - 2007
N2 - In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1→0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1→2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 512 cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell-like confinement for the hydrogen molecule wave function. These results demonstrate that translational quantum effects are very significant and a classical treatment of the hydrogen molecule dynamics is inappropriate under such conditions.
AB - In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1→0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1→2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 512 cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell-like confinement for the hydrogen molecule wave function. These results demonstrate that translational quantum effects are very significant and a classical treatment of the hydrogen molecule dynamics is inappropriate under such conditions.
UR - http://www.scopus.com/inward/record.url?scp=34948880258&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34948880258&partnerID=8YFLogxK
U2 - 10.1063/1.2775927
DO - 10.1063/1.2775927
M3 - Article
AN - SCOPUS:34948880258
SN - 0021-9606
VL - 127
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 13
M1 - 134505
ER -