Industrial engineering beyond numbers: Optimizing under ethics

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

Optimization is a major component of industrial engineering. Simplistically (and naively), the education of industrial engineers focuses on learning a number of techniques with which they can mathematically model a number of scenarios and optimize a mathematical function that is subjected to various mathematical constraints. Reality works differently though. The implementation of optimization actions in a real context yields direct and indirect impacts to society and to individual people. They are further strengthened when projects are implemented or executed in international settings, where different systems of laws, regulations, cultures, and values play a role. Several examples in the past have shown dramatic consequences for not considering ethical implications of engineering decisions in real projects. Therefore, exposing students to ethical conflicts, as well as educating them in the skills, competences, and tools necessary to cope with them, are necessary in the education of every engineer. This paper highlights the integration of ethics into an existing, traditional industrial engineering undergraduate course at the senior level. In particular, we show how traditional optimization assignments can be reformulated to blend mathematics and ethics. Therefore, we do not follow the path of developing an independent, elective course that focuses on ethical issues. Furthermore, integration of ethics is not performed through case studies on which students can reflect on their own experiences. Instead, we embed ethical issues in traditional industrial engineering knowledge. In this way, ethical conflicts reveal themselves to students as students attempt to solve a traditional industrial engineering assignment. In this way, students are exposed to an ethical conflict with no baseline course of action, but they need to find alternatives and choose their own course of action without any prior or existing information about potential outcomes and impacts of their decisions. While traditional industrial engineering techniques and tools help in informing the decision, students realize that they are not sufficient to provide an answer to the problem by themselves. Personal decision-making is necessary. Answers to assignments are then shared and discussed in class with the objectives of understanding, accepting, and embracing solution diversity as a function of personal ethics. This is key for students to understand that there are not "by the book" answers to resolving ethical conflicts, but that solutions reduce in several cases to personal ethics. Finally, students also learn about the ability and obligation of an engineer to use "no" as a valid and professional engineering solution, which can be used when there is a conflict between an engineering assignment, its solution, its recommendations, and personal ethics.

Original languageEnglish (US)
JournalASEE Annual Conference and Exposition, Conference Proceedings
Volume2017-June
StatePublished - Jun 24 2017
Externally publishedYes
Event124th ASEE Annual Conference and Exposition - Columbus, United States
Duration: Jun 25 2017Jun 28 2017

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Industrial engineering beyond numbers: Optimizing under ethics'. Together they form a unique fingerprint.

Cite this