TY - JOUR
T1 - Increased Levels of Circulating Angiogenic Cells and Signaling Proteins in Older Adults With Cerebral Small Vessel Disease
AU - Kapoor, Arunima
AU - Gaubert, Aimée
AU - Marshall, Anisa
AU - Meier, Irene B.
AU - Yew, Belinda
AU - Ho, Jean K.
AU - Blanken, Anna E.
AU - Dutt, Shubir
AU - Sible, Isabel J.
AU - Li, Yanrong
AU - Jang, Jung Yun
AU - Brickman, Adam M.
AU - Rodgers, Kathleen
AU - Nation, Daniel A.
N1 - Publisher Copyright:
© Copyright © 2021 Kapoor, Gaubert, Marshall, Meier, Yew, Ho, Blanken, Dutt, Sible, Li, Jang, Brickman, Rodgers and Nation.
PY - 2021/9/28
Y1 - 2021/9/28
N2 - Background: Cerebral small vessel disease (SVD) is associated with increased risk of stroke and dementia. Progressive damage to the cerebral microvasculature may also trigger angiogenic processes to promote vessel repair. Elevated levels of circulating endothelial progenitor cells (EPCs) and pro-angiogenic signaling proteins are observed in response to vascular injury. We aimed to examine circulating levels of EPCs and proangiogenic proteins in older adults with evidence of SVD. Methods: Older adults (ages 55–90) free of dementia or stroke underwent venipuncture and brain magnetic resonance imaging (MRI). Flow cytometry quantified circulating EPCs as the number of cells in the lymphocyte gate positively expressing EPC surface markers (CD34+CD133+CD309+). Plasma was assayed for proangiogenic factors (VEGF-A, VEGF-C, VEGF-D, Tie-2, and Flt-1). Total SVD burden score was determined based on MRI markers, including white matter hyperintensities, cerebral microbleeds and lacunes. Results: Sixty-four older adults were included. Linear regression revealed that older adults with higher circulating EPC levels exhibited greater total SVD burden [β = 1.0 × 105, 95% CI (0.2, 1.9), p = 0.019], after accounting for age and sex. Similarly, a positive relationship between circulating VEGF-D and total SVD score was observed, controlling for age and sex [β = 0.001, 95% CI (0.000, 0.001), p = 0.048]. Conclusion: These findings suggest that elevated levels of circulating EPCs and VEGF-D correspond with greater cerebral SVD burden in older adults. Additional studies are warranted to determine whether activation of systemic angiogenic growth factors and EPCs represents an early attempt to rescue the vascular endothelium and repair damage in SVD.
AB - Background: Cerebral small vessel disease (SVD) is associated with increased risk of stroke and dementia. Progressive damage to the cerebral microvasculature may also trigger angiogenic processes to promote vessel repair. Elevated levels of circulating endothelial progenitor cells (EPCs) and pro-angiogenic signaling proteins are observed in response to vascular injury. We aimed to examine circulating levels of EPCs and proangiogenic proteins in older adults with evidence of SVD. Methods: Older adults (ages 55–90) free of dementia or stroke underwent venipuncture and brain magnetic resonance imaging (MRI). Flow cytometry quantified circulating EPCs as the number of cells in the lymphocyte gate positively expressing EPC surface markers (CD34+CD133+CD309+). Plasma was assayed for proangiogenic factors (VEGF-A, VEGF-C, VEGF-D, Tie-2, and Flt-1). Total SVD burden score was determined based on MRI markers, including white matter hyperintensities, cerebral microbleeds and lacunes. Results: Sixty-four older adults were included. Linear regression revealed that older adults with higher circulating EPC levels exhibited greater total SVD burden [β = 1.0 × 105, 95% CI (0.2, 1.9), p = 0.019], after accounting for age and sex. Similarly, a positive relationship between circulating VEGF-D and total SVD score was observed, controlling for age and sex [β = 0.001, 95% CI (0.000, 0.001), p = 0.048]. Conclusion: These findings suggest that elevated levels of circulating EPCs and VEGF-D correspond with greater cerebral SVD burden in older adults. Additional studies are warranted to determine whether activation of systemic angiogenic growth factors and EPCs represents an early attempt to rescue the vascular endothelium and repair damage in SVD.
KW - aging
KW - cerebral microvascular pathology
KW - cerebral small vessel disease
KW - dementia
KW - endothelial progenitor cells
KW - vascular dementia
KW - vascular endothelial growth factor
UR - http://www.scopus.com/inward/record.url?scp=85117156440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117156440&partnerID=8YFLogxK
U2 - 10.3389/fnagi.2021.711784
DO - 10.3389/fnagi.2021.711784
M3 - Article
AN - SCOPUS:85117156440
SN - 1663-4365
VL - 13
JO - Frontiers in Aging Neuroscience
JF - Frontiers in Aging Neuroscience
M1 - 711784
ER -