Incorporation of active factors (pharmacological substances) in biomaterials for tissue engineering

Roche de Guzman, Mark van Dyke

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Scopus citations

Abstract

In the context of tissue engineering and regenerative medicine, biomaterials are often used as scaffolding implants that act as a surrogate for the extracellular matrix (ECM), supporting local microenvironment-specific populations of cells for the augmentation, repair, or replacement of dysfunctional bodily tissues and organs. Because of the absence of cells and differences in structure, composition, and three-dimensional organization compared with the native tissue target, biomaterial substitutes are biologically and physically tissue mismatched. Thus, they are innately limited in their functional and regenerative capacities. An example is fibers made from the polymer poly(ethylene terephthalate) (PET), commonly known as Dacron, which is still currently being used as a large-diameter blood vessel graft [1]. The only resemblance of Dacron vascular graft to the normal vessel is the tubular solid geometry. On a short-term basis, this conduit works by acting as a means to route the circulation of blood. Protein adsorption at the solid (biomaterial surface)–liquid (blood plasma) interface allows the host cells to recognize the foreign surface and enables the formation of neointimal tissue on the inner wall. However, the newly formed ingrowth is not physiologically similar to the endothelium [2] that naturally covers the inner surface of blood vessels, consequently posing a risk of layer buildup, thrombosis, and occlusion. Repeated mechanical stresses encountered by the implant generates fatigue and material breakdown. Incomplete host cellular integration leads to a nonhealing response and eventual biomaterial implant failure [3].

Original languageEnglish (US)
Title of host publicationRegenerative Pharmacology
PublisherCambridge University Press
Pages167-189
Number of pages23
ISBN (Electronic)9781139047357
ISBN (Print)9780521899499
DOIs
StatePublished - Jan 1 2011
Externally publishedYes

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Incorporation of active factors (pharmacological substances) in biomaterials for tissue engineering'. Together they form a unique fingerprint.

Cite this