TY - JOUR
T1 - In-situ cosmogenic 14C
T2 - Production and examples of its unique applications in studies of terrestrial and extraterrestrial processes
AU - Lal, D.
AU - Jull, A. J.T.
PY - 2001
Y1 - 2001
N2 - Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lal and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 199 la). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.
AB - Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lal and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 199 la). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.
UR - http://www.scopus.com/inward/record.url?scp=0035572071&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035572071&partnerID=8YFLogxK
U2 - 10.1017/s0033822200041394
DO - 10.1017/s0033822200041394
M3 - Article
AN - SCOPUS:0035572071
SN - 0033-8222
VL - 43
SP - 731
EP - 742
JO - Radiocarbon
JF - Radiocarbon
IS - 2 PART II
ER -