TY - JOUR
T1 - In Silico cancer cell versus stroma cellularity index computed from species-specific human and mouse transcriptome of xenograft models
T2 - Towards accurate stroma targeting therapy assessment
AU - Yang, Xinan
AU - Huang, Yong
AU - Lee, Younghee
AU - Gardeux, Vincent
AU - Achour, Ikbel
AU - Regan, Kelly
AU - Rebman, Ellen
AU - Li, Haiquan
AU - Lussier, Yves A.
N1 - Funding Information:
Publication for this article has been funded by grants 1U54CA121852, UL1 RR024999-03, K22 LM008308, R21 CA167305-01A1. This work was supported in part by the UA Cancer Center grant (NCI P30CA023074), the UA BIO5 Institute, and the UA Clinical & Translational Science Institute of the University of Arizona. This article has been published as part of BMC Medical Genomics Volume 7 Supplement 1, 2014: Selected articles from the 3rd Translational Bioinformatics Conference (TBC/ISCB-Asia 2013). The full contents of the supplement are available online at http://www.biomedcentral.com/ bmcmedgenomics/supplements/7/S1.
PY - 2014/5/8
Y1 - 2014/5/8
N2 - Background: The current state of the art for measuring stromal response to targeted therapy requires burdensome and rate limiting quantitative histology. Transcriptome measures are increasingly affordable and provide an opportunity for developing a stromal versus cancer ratio in xenograft models. In these models, human cancer cells are transplanted into mouse host tissues (stroma) and together coevolve into a tumour microenvironment. However, profiling the mouse or human component separately remains problematic. Indeed, laser capture microdissection is labour intensive. Moreover, gene expression using commercial microarrays introduces significant and underreported cross-species hybridization errors that are commonly overlooked by biologists. Method. We developed a customized dual-species array, H&M array, and performed cross-species and species-specific hybridization measurements. We validated a new methodology for establishing the stroma vs cancer ratio using transcriptomic data. Results: In the biological validation of the H&M array, cross-species hybridization of human and mouse probes was significantly reduced (4.5 and 9.4 fold reduction, respectively; p < 2x10-16 for both, Mann-Whitney test). We confirmed the capability of the H&M array to determine the stromal to cancer cells ratio based on the estimation of cellularity index of mouse/human mRNA content in vitro. This new metrics enable to investigate more efficiently the stroma-cancer cell interactions (e.g. cellularity) bypassing labour intensive requirement and biases of laser capture microdissection. Conclusion: These results provide the initial evidence of improved and cost-efficient analytics for the investigation of cancer cell microenvironment, using species-specificity arrays specifically designed for xenografts models.
AB - Background: The current state of the art for measuring stromal response to targeted therapy requires burdensome and rate limiting quantitative histology. Transcriptome measures are increasingly affordable and provide an opportunity for developing a stromal versus cancer ratio in xenograft models. In these models, human cancer cells are transplanted into mouse host tissues (stroma) and together coevolve into a tumour microenvironment. However, profiling the mouse or human component separately remains problematic. Indeed, laser capture microdissection is labour intensive. Moreover, gene expression using commercial microarrays introduces significant and underreported cross-species hybridization errors that are commonly overlooked by biologists. Method. We developed a customized dual-species array, H&M array, and performed cross-species and species-specific hybridization measurements. We validated a new methodology for establishing the stroma vs cancer ratio using transcriptomic data. Results: In the biological validation of the H&M array, cross-species hybridization of human and mouse probes was significantly reduced (4.5 and 9.4 fold reduction, respectively; p < 2x10-16 for both, Mann-Whitney test). We confirmed the capability of the H&M array to determine the stromal to cancer cells ratio based on the estimation of cellularity index of mouse/human mRNA content in vitro. This new metrics enable to investigate more efficiently the stroma-cancer cell interactions (e.g. cellularity) bypassing labour intensive requirement and biases of laser capture microdissection. Conclusion: These results provide the initial evidence of improved and cost-efficient analytics for the investigation of cancer cell microenvironment, using species-specificity arrays specifically designed for xenografts models.
UR - http://www.scopus.com/inward/record.url?scp=84900429502&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84900429502&partnerID=8YFLogxK
U2 - 10.1186/1755-8794-7-S1-S2
DO - 10.1186/1755-8794-7-S1-S2
M3 - Article
C2 - 25079962
AN - SCOPUS:84900429502
SN - 1755-8794
VL - 7
JO - BMC Medical Genomics
JF - BMC Medical Genomics
IS - SUPPL.1
M1 - S2
ER -