TY - JOUR
T1 - Improving solids retention in upflow anaerobic sludge blanket reactors at low temperatures using lamella settlers
AU - Halalsheh, Maha M.
AU - Muhsen, Hussien H.
AU - Shatanawi, Khaldoun M.
AU - Field, Jim A.
PY - 2010/1
Y1 - 2010/1
N2 - Lamella settlers were used to increase sludge concentration in pilot scale UASB reactors treating concentrated sewage at low temperature. The aim was to increase sludge retention time (SRT) and achieve better digestion in UASB reactors without the need for increasing the hydraulic retention time (HRT). Two modified UASB reactors were used for this purpose. In the first reactor, lamella settlers were installed in the settling zone of the UASB reactor and the reactor was named UASB-ESR1. In the second reactor, lamella settlers were installed underneath the gas liquid separator (GLS) and the reactor was named UASB-ESR2. The sludge concentration, sludge profile, and system performance of each reactor were monitored. The obtained sludge concentrations were 50 and 53 g TS/l for UASB-ESR1 and UASB-ESR2, respectively. The measured concentrations were almost double the concentrations reported for conventional UASB reactors ranging 16-26 g TS/l. The calculated SRT in the modified UASB reactors was 103 days in both reactors. The average total COD (CODtot) and suspended COD (CODss) removal efficiencies were 38% and 60%, respectively for the UASB-ESR1. The average CODtot and CODss removal efficiencies for the UASB-ESR2 were 41% and 62%, respectively. The modified reactors were considered at the startup period and the performances of the modified systems are expected to significantly improve when arriving at steady state conditions.
AB - Lamella settlers were used to increase sludge concentration in pilot scale UASB reactors treating concentrated sewage at low temperature. The aim was to increase sludge retention time (SRT) and achieve better digestion in UASB reactors without the need for increasing the hydraulic retention time (HRT). Two modified UASB reactors were used for this purpose. In the first reactor, lamella settlers were installed in the settling zone of the UASB reactor and the reactor was named UASB-ESR1. In the second reactor, lamella settlers were installed underneath the gas liquid separator (GLS) and the reactor was named UASB-ESR2. The sludge concentration, sludge profile, and system performance of each reactor were monitored. The obtained sludge concentrations were 50 and 53 g TS/l for UASB-ESR1 and UASB-ESR2, respectively. The measured concentrations were almost double the concentrations reported for conventional UASB reactors ranging 16-26 g TS/l. The calculated SRT in the modified UASB reactors was 103 days in both reactors. The average total COD (CODtot) and suspended COD (CODss) removal efficiencies were 38% and 60%, respectively for the UASB-ESR1. The average CODtot and CODss removal efficiencies for the UASB-ESR2 were 41% and 62%, respectively. The modified reactors were considered at the startup period and the performances of the modified systems are expected to significantly improve when arriving at steady state conditions.
KW - Lamella settlers
KW - Low temperature
KW - Sludge concentration
KW - UASB reactor performance
UR - http://www.scopus.com/inward/record.url?scp=77953250136&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953250136&partnerID=8YFLogxK
U2 - 10.1080/10934529.2010.486329
DO - 10.1080/10934529.2010.486329
M3 - Article
C2 - 20526935
AN - SCOPUS:77953250136
SN - 1093-4529
VL - 45
SP - 1054
EP - 1059
JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
IS - 9
ER -