TY - JOUR
T1 - Improvement of insulin sensitivity by antagonism of the renin-angiotensin system
AU - Henriksen, Erik J.
PY - 2007/9
Y1 - 2007/9
N2 - The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angiotensin II (ANG II) produced from this system can act on ANG II type 1 receptors both in the vascular endothelium and in myocytes, with an enhancement of the intracellular production of reactive oxygen species (ROS). Evidence from animal model and cultured skeletal muscle cell line studies indicates ANG II can induce insulin resistance. Chronic ANG II infusion into an insulin-sensitive rat produces a markedly insulin-resistant state that is associated with a negative impact of ROS on the skeletal muscle glucose transport system. ANG II treatment of L6 myocytes causes impaired insulin receptor substrate (IRS)-1-dependent insulin signaling that is accompanied by augmentation of NADPH oxidase-mediated ROS production. Further critical evidence has been obtained from the TG(mREN2)27 rat, a model of RAS overactivity and insulin resistance. The TG(mREN2)27 rat displays whole body and skeletal muscle insulin resistance that is associated with local oxidative stress and a significant reduction in the functionality of the insulin receptor (IR)/IRS-1-dependent insulin signaling. Treatment with a selective ANG II type 1 receptor antagonist leads to improvements in whole body insulin sensitivity, enhanced insulin-stimulated glucose transport in muscle, and reduced local oxidative stress. In addition, exercise training of TG(mREN2)27 rats enhances whole body and skeletal muscle insulin action. However, these metabolic improvements elicited by antagonism of ANG II action or exercise training are independent of upregulation of IR/IRS-1-dependent signaling. Collectively, these findings support targeting the RAS in the design of interventions to improve metabolic and cardiovascular function in conditions of insulin resistance associated with prediabetes and type 2 diabetes.
AB - The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angiotensin II (ANG II) produced from this system can act on ANG II type 1 receptors both in the vascular endothelium and in myocytes, with an enhancement of the intracellular production of reactive oxygen species (ROS). Evidence from animal model and cultured skeletal muscle cell line studies indicates ANG II can induce insulin resistance. Chronic ANG II infusion into an insulin-sensitive rat produces a markedly insulin-resistant state that is associated with a negative impact of ROS on the skeletal muscle glucose transport system. ANG II treatment of L6 myocytes causes impaired insulin receptor substrate (IRS)-1-dependent insulin signaling that is accompanied by augmentation of NADPH oxidase-mediated ROS production. Further critical evidence has been obtained from the TG(mREN2)27 rat, a model of RAS overactivity and insulin resistance. The TG(mREN2)27 rat displays whole body and skeletal muscle insulin resistance that is associated with local oxidative stress and a significant reduction in the functionality of the insulin receptor (IR)/IRS-1-dependent insulin signaling. Treatment with a selective ANG II type 1 receptor antagonist leads to improvements in whole body insulin sensitivity, enhanced insulin-stimulated glucose transport in muscle, and reduced local oxidative stress. In addition, exercise training of TG(mREN2)27 rats enhances whole body and skeletal muscle insulin action. However, these metabolic improvements elicited by antagonism of ANG II action or exercise training are independent of upregulation of IR/IRS-1-dependent signaling. Collectively, these findings support targeting the RAS in the design of interventions to improve metabolic and cardiovascular function in conditions of insulin resistance associated with prediabetes and type 2 diabetes.
KW - Angiotensin II
KW - Glucose transport
KW - Insulin resistance
KW - Skeletal muscle
UR - http://www.scopus.com/inward/record.url?scp=34548452026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548452026&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00147.2007
DO - 10.1152/ajpregu.00147.2007
M3 - Review article
C2 - 17581838
AN - SCOPUS:34548452026
SN - 0363-6119
VL - 293
SP - R974-R980
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 3
ER -