Improved Approximation of Storage-Rate Tradeoff for Caching with Multiple Demands

Avik Sengupta, Ravi Tandon

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Caching at the network edge has emerged as a viable solution for alleviating the severe capacity crunch in modern content centric wireless networks by leveraging network load-balancing in the form of localized content storage and delivery. In this paper, we consider a cache-aided network, where the cache storage phase is assisted by a central server and users can demand multiple files at each transmission interval. To service these demands, we consider two delivery models: 1) centralized content delivery, where user demands at each transmission interval are serviced by the central server via multicast transmissions; and 2) device-to-device assisted distributed delivery, where users multicast to each other in order to service file demands. For such cache-aided networks, we present new results on the fundamental cache storage versus transmission rate tradeoff. Specifically, we develop a new technique for characterizing information theoretic lower bounds on the storage-rate tradeoff and show that the new lower bounds are strictly tighter than cut-set bounds from literature. Furthermore, using the new lower bounds, we improve the constant factor approximation of the optimal storage-rate tradeoff for cache-aided systems under both delivery models.

Original languageEnglish (US)
Article number7843674
Pages (from-to)1940-1955
Number of pages16
JournalIEEE Transactions on Communications
Volume65
Issue number5
DOIs
StatePublished - May 2017

Keywords

  • Caching
  • Han's inequality
  • centralized content delivery
  • device-to-device
  • edge networks

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Improved Approximation of Storage-Rate Tradeoff for Caching with Multiple Demands'. Together they form a unique fingerprint.

Cite this