Importance of oceanic heat uptake in transient climate change

Ronald J. Stouffer, Joellen Russell, Michael J. Spelman

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

The impact of the differences in the oceanic heat uptake and storage on the transient response to changes in radiative forcing is investigated using two newly developed coupled atmosphere-ocean models. In spite of its larger equilibrium climate sensitivity, one model (CM2.1) has smaller transient globally averaged surface air temperature (SAT) response than is found in the second model (CM2.0). The differences in the SAT response become larger as radiative forcing increases and the time scales become longer. The smaller transient SAT response in CM2.1 is due to its larger oceanic heat uptake. The heat storage differences between the two models also increase with time and larger rates of radiative forcing. The larger oceanic heat uptake in CM2.1 can be traced to differences in the Southern Ocean heat uptake and is related to a more realistic Southern Ocean simulation in the control integration.

Original languageEnglish (US)
Article numberL17704
JournalGeophysical Research Letters
Volume33
Issue number17
DOIs
StatePublished - Sep 1 2006

ASJC Scopus subject areas

  • Geophysics
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Importance of oceanic heat uptake in transient climate change'. Together they form a unique fingerprint.

Cite this