Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation

Steven J. Celetti, Kyle N. Cowan, Silvia Penuela, Qing Shao, Jared Churko, Dale W. Laird

Research output: Contribution to journalArticlepeer-review

91 Scopus citations


Pannexin (Panx) 1 and Panx3 are integral membrane proteins that share some sequence homology with the innexin family of invertebrate gap junctions. They are expressed in mammalian skin. Pannexins have been reported to form functional mechanosensitive single-membrane channels, but their importance in regulating cellular function is poorly understood. In this study, Panx1 and Panx3 were detected in the epidermis of 13.5 day embryonic mice. Compared with newborn mice, there was less Panx1 expression in both thin and thick murine skin, whereas Panx3 expression was unchanged. To investigate the role of pannexins in keratinocyte differentiation, we employed rat epidermal keratinocytes (REKs) that have the capacity to differentiate into organotypic epidermis, and engineered them to overexpress Panx1, Panx1-GFP or Panx3. The expression of Panx1 or Panx3 resulted in the increased ability of REKs to take up dye, suggesting that cell-surface channels were formed. Compared with monolayer REKs, endogenous Panx1 levels remained unchanged, whereas the 70 kDa immunoreactive species of Panx3 was greatly increased in the organotypic epidermis. In monolayer cultures, ectopic Panx1 and Panx1-GFP localized to the plasma membrane, whereas Panx3 displayed both intracellular and plasmamembrane profiles. Although both pannexins reduced cell proliferation, only Panx1 disrupted the architecture of the organotypic epidermis and markedly dysregulated cytokeratin 14 expression and localization. Furthermore, ectopic expression of only Panx1 reduced the vital layer thickness of the organotypic epidermis. In summary, Panx1 and Panx3 are coexpressed in the mammalian epidermis, and the regulation of Panx1 plays a key role in keratinocyte differentiation.

Original languageEnglish (US)
Pages (from-to)1363-1372
Number of pages10
JournalJournal of Cell Science
Issue number8
StatePublished - Apr 15 2010


  • Differentiation
  • Epidermis
  • Pannexins
  • Proliferation

ASJC Scopus subject areas

  • Cell Biology


Dive into the research topics of 'Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation'. Together they form a unique fingerprint.

Cite this