TY - JOUR
T1 - Implantable sensor technology
T2 - From research to clinical practice
AU - Ledet, Eric H.
AU - D'Lima, Darryl
AU - Westerhoff, Peter
AU - Szivek, John A.
AU - Wachs, Rebecca A.
AU - Bergmann, Georg
PY - 2012/6
Y1 - 2012/6
N2 - For decades, implantable sensors have been used in research to provide comprehensive understanding of the biomechanics of the human musculoskeletal system. These complex sensor systems have improved our understanding of the in vivo environment by yielding in vivo measurements of force, torque, pressure, and temperature. Historically, implants have been modified to be used as vehicles for sensors and telemetry systems. Recently, microfabrication and nanofabrication technology have sufficiently evolved that wireless, passive sensor systems can be incorporated into implants or tissue with minimal or no modification to the host implant. At the same time, sensor technology costs per unit have become less expensive, providing opportunities for use in daily clinical practice. Although diagnostic implantable sensors can be used clinically without significant increases in expense or surgical time, to date, orthopaedic smart implants have been used exclusively as research tools. These implantable sensors can facilitate personalized medicine by providing exquisitely accurate in vivo data unique to each patient.
AB - For decades, implantable sensors have been used in research to provide comprehensive understanding of the biomechanics of the human musculoskeletal system. These complex sensor systems have improved our understanding of the in vivo environment by yielding in vivo measurements of force, torque, pressure, and temperature. Historically, implants have been modified to be used as vehicles for sensors and telemetry systems. Recently, microfabrication and nanofabrication technology have sufficiently evolved that wireless, passive sensor systems can be incorporated into implants or tissue with minimal or no modification to the host implant. At the same time, sensor technology costs per unit have become less expensive, providing opportunities for use in daily clinical practice. Although diagnostic implantable sensors can be used clinically without significant increases in expense or surgical time, to date, orthopaedic smart implants have been used exclusively as research tools. These implantable sensors can facilitate personalized medicine by providing exquisitely accurate in vivo data unique to each patient.
UR - http://www.scopus.com/inward/record.url?scp=84861965833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861965833&partnerID=8YFLogxK
U2 - 10.5435/JAAOS-20-06-383
DO - 10.5435/JAAOS-20-06-383
M3 - Review article
C2 - 22661568
AN - SCOPUS:84861965833
SN - 1067-151X
VL - 20
SP - 383
EP - 392
JO - Journal of the American Academy of Orthopaedic Surgeons
JF - Journal of the American Academy of Orthopaedic Surgeons
IS - 6
ER -