TY - JOUR
T1 - Impacts of Riparian Restoration on Vegetation and Avifauna on Private and Communal Lands in Northwest Mexico and Implications for Future Efforts
AU - Flesch, Aaron D.
AU - Esquer, Antonio
N1 - Funding Information:
We thank the U.S. Fish and Wildlife Service, Neotropical Migratory Bird Conservation Act grants program (grants 6350-F16AP00453, 5139-MT-N911) for funding. D. Seibert and K. Vaughn of Borderlands Restoration L3C(BR), T. Hare of BR in Phase II and Sky Island Alliance (SIA) in Phase I, C. Morris, N. Deyo, and others with SIA in Phase I greatly helped project implementation. E. Lopez Saavedra worked closely with landowners during Phases I and V. Clothier helped design and implement restoration works with SIA staff and volunteers. We thank G. Robles and H. Rivera for providing housing and hospitality in the field, all collaborating landowners and managers, and R. L. Hutto for suggestions. R. Aracil, J. Goldberg, C. González Sánchez, J. Valenzuela Amarillas, and H. Gurolla assisted with field work and data entry. C. Robles Elías and G. Robles of Rancho El Aribabi provided information on past land use, management, and vegetation in the region, and J. Duberstein of Sonoran Joint Venture provided information on past efforts at El Aribabi. Staff of the School of Natural Resources and the Environment at University of Arizona, Division of Biological Sciences at University of Montana, and Y. Cortez of BR provided administrative support.
Funding Information:
We thank the U.S. Fish and Wildlife Service, Neotropical Migratory Bird Conservation Act grants program (grants 6350-F16AP00453, 5139-MT-N911) for funding. D. Seibert and K. Vaughn of Borderlands Restoration L3C(BR), T. Hare of BR in Phase II and Sky Island Alliance (SIA) in Phase I, C. Morris, N. Deyo, and others with SIA in Phase I greatly helped project implementation. E. Lopez Saavedra worked closely with landowners during Phases I and V. Clothier helped design and implement restoration works with SIA staff and volunteers. We thank G. Robles and H. Rivera for providing housing and hospitality in the field, all collaborating landowners and managers, and R. L. Hutto for suggestions. R. Aracil, J. Goldberg, C. Gonz?lez S?nchez, J. Valenzuela Amarillas, and H. Gurolla assisted with field work and data entry. C. Robles El?as and G. Robles of Rancho El Aribabi provided information on past land use, management, and vegetation in the region, and J. Duberstein of Sonoran Joint Venture provided information on past efforts at El Aribabi. Staff of the School of Natural Resources and the Environment at University of Arizona, Division of Biological Sciences at University of Montana, and Y. Cortez of BR provided administrative support. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: U.S. Fish and Wildlife Service, Neotropical Migratory Bird Conservation Act grants program (grants 6350-F16AP00453, 5139-MT-N911) provided funding.
Funding Information:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: U.S. Fish and Wildlife Service, Neotropical Migratory Bird Conservation Act grants program (grants 6350-F16AP00453, 5139-MT-N911) provided funding.
Publisher Copyright:
© The Author(s) 2020.
PY - 2020
Y1 - 2020
N2 - Restoring and enhancing riparian vegetation on private and communal lands in Mexico is important for biodiversity conservation given the ecological significance of these areas and the scarcity of public protected areas. To enhance riparian vegetation and wildlife habitats and train local people in restoration techniques, we implemented restoration and outreach efforts on private and communal lands in the Sky Islands region of northwest Mexico. We fenced 475 ha of riparian zones from livestock, erected erosion-control structures, planted trees, and developed management agreements for cool-season grazing with landowners on 10 ranches across 3 sites in 2012-2013, then repaired fences and renegotiated agreements in 2017-2019. To foster evaluation, we used a before-after/control-impact design to measure attributes of vegetation structure and bird communities and compared baselines from 2012 with post-treatment estimates from 2019. As predicted, understory vegetation volume generally increased in treatments relative to controls (P =.09), especially when one treatment area with the lowest pre-treatment grazing impacts was censored (P =.01). Although canopy cover also increased, there was little differential change in treatments relative to controls (P ⩾.23) due likely to longer time periods needed to realize responses. Densities of most focal bird populations varied across time periods in directions that typically matched observed changes in vegetation structure, but fewer species showed signs of differential positive change linked to treatments relative to controls. Densities of Yellow-breasted Chat, a key understory obligate and important focal species, increased in treatments relative to controls across sites, as did densities of Sinaloa Wren, which also use dense underbrush (P ⩽.05). Positive changes by other understory obligates (eg, Common Yellowthroat, Song Sparrow) were more local but sometimes of high magnitude (>8-fold) also suggesting positive impacts of treatments. Despite mixed results over a limited time period, these patterns suggest restoration efforts drove localized recovery of understory vegetation and associated bird populations, but benefits varied widely with environmental and social factors linked to management. Greater ecological benefits to riparian areas on private and communal lands in this region can be fostered by further incentivizing construction, maintenance, and proper use of restoration infrastructure, through education, and by building relationships based on trust and credibility with landowners.
AB - Restoring and enhancing riparian vegetation on private and communal lands in Mexico is important for biodiversity conservation given the ecological significance of these areas and the scarcity of public protected areas. To enhance riparian vegetation and wildlife habitats and train local people in restoration techniques, we implemented restoration and outreach efforts on private and communal lands in the Sky Islands region of northwest Mexico. We fenced 475 ha of riparian zones from livestock, erected erosion-control structures, planted trees, and developed management agreements for cool-season grazing with landowners on 10 ranches across 3 sites in 2012-2013, then repaired fences and renegotiated agreements in 2017-2019. To foster evaluation, we used a before-after/control-impact design to measure attributes of vegetation structure and bird communities and compared baselines from 2012 with post-treatment estimates from 2019. As predicted, understory vegetation volume generally increased in treatments relative to controls (P =.09), especially when one treatment area with the lowest pre-treatment grazing impacts was censored (P =.01). Although canopy cover also increased, there was little differential change in treatments relative to controls (P ⩾.23) due likely to longer time periods needed to realize responses. Densities of most focal bird populations varied across time periods in directions that typically matched observed changes in vegetation structure, but fewer species showed signs of differential positive change linked to treatments relative to controls. Densities of Yellow-breasted Chat, a key understory obligate and important focal species, increased in treatments relative to controls across sites, as did densities of Sinaloa Wren, which also use dense underbrush (P ⩽.05). Positive changes by other understory obligates (eg, Common Yellowthroat, Song Sparrow) were more local but sometimes of high magnitude (>8-fold) also suggesting positive impacts of treatments. Despite mixed results over a limited time period, these patterns suggest restoration efforts drove localized recovery of understory vegetation and associated bird populations, but benefits varied widely with environmental and social factors linked to management. Greater ecological benefits to riparian areas on private and communal lands in this region can be fostered by further incentivizing construction, maintenance, and proper use of restoration infrastructure, through education, and by building relationships based on trust and credibility with landowners.
KW - Before-after/control-impact
KW - cattle exclosures
KW - conservation incentives
KW - cool-season grazing
KW - density
KW - distance sampling
UR - http://www.scopus.com/inward/record.url?scp=85087475640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087475640&partnerID=8YFLogxK
U2 - 10.1177/1178622120938060
DO - 10.1177/1178622120938060
M3 - Article
AN - SCOPUS:85087475640
VL - 13
JO - Air, Soil and Water Research
JF - Air, Soil and Water Research
SN - 1178-6221
ER -