TY - JOUR
T1 - Impact of nicotine metabolism on nicotine's pharmacological effects and behavioral responses
T2 - Insights from a Cyp2a(4/5)bgs-Null Mouses
AU - Li, Lei
AU - Jia, Kunzhi
AU - Zhou, Xin
AU - McCallum, Sarah E.
AU - Hough, Lindsay B.
AU - Ding, Xinxin
PY - 2013/12
Y1 - 2013/12
N2 - Nicotine metabolism is believed to affect not only nicotine's pharmacological effects but also nicotine addiction. As a key step toward testing this hypothesis, we have studied nicotine metabolism and nicotine's pharmacological and behavioral effects in a novel knockout mouse model [named Cyp2a(4/5)bgs-null] lacking a number of cytochrome P450 genes known to be or possibly involved in nicotine metabolism, including two Cyp2a and all Cyp2b genes. We found that, compared with wild-type mice, the Cyp2a(4/5)bgs-null mice showed .90% decreases in hepatic microsomal nicotine oxidase activity in vitro, and in rates of systemic nicotine clearance in vivo. Further comparisons of nicotine metabolism between Cyp2a(4/5)bgs-null and Cyp2a5-null mice revealed significant roles of both CYP2A5 and CYP2B enzymes in nicotine clearance. Compared with the behavioral responses in wild-type mice, the decreases in nicotine metabolism in the Cyp2a(4/5)bgs-null mice led to prolonged nicotine-induced acute pharmacological effects, in that null mice showed enhanced nicotine hypothermia and antinociception. Furthermore, we found that the Cyp2a(4/5)bgs-null mice developed a preference for nicotine in a conditioned place preference test, a commonly used test of nicotine's rewarding effects, at a nicotine dose that was 4-fold lower than what was required by wild-type mice. Thus, CYP2A/2B-catalyzed nicotine clearance affects nicotine's behavioral response as well as its acute pharmacological effects in mice. This result provides direct experimental support of the findings of pharmacogenetic studies that suggest linkage between rates of nicotine metabolism and smoking behavior in humans.
AB - Nicotine metabolism is believed to affect not only nicotine's pharmacological effects but also nicotine addiction. As a key step toward testing this hypothesis, we have studied nicotine metabolism and nicotine's pharmacological and behavioral effects in a novel knockout mouse model [named Cyp2a(4/5)bgs-null] lacking a number of cytochrome P450 genes known to be or possibly involved in nicotine metabolism, including two Cyp2a and all Cyp2b genes. We found that, compared with wild-type mice, the Cyp2a(4/5)bgs-null mice showed .90% decreases in hepatic microsomal nicotine oxidase activity in vitro, and in rates of systemic nicotine clearance in vivo. Further comparisons of nicotine metabolism between Cyp2a(4/5)bgs-null and Cyp2a5-null mice revealed significant roles of both CYP2A5 and CYP2B enzymes in nicotine clearance. Compared with the behavioral responses in wild-type mice, the decreases in nicotine metabolism in the Cyp2a(4/5)bgs-null mice led to prolonged nicotine-induced acute pharmacological effects, in that null mice showed enhanced nicotine hypothermia and antinociception. Furthermore, we found that the Cyp2a(4/5)bgs-null mice developed a preference for nicotine in a conditioned place preference test, a commonly used test of nicotine's rewarding effects, at a nicotine dose that was 4-fold lower than what was required by wild-type mice. Thus, CYP2A/2B-catalyzed nicotine clearance affects nicotine's behavioral response as well as its acute pharmacological effects in mice. This result provides direct experimental support of the findings of pharmacogenetic studies that suggest linkage between rates of nicotine metabolism and smoking behavior in humans.
UR - http://www.scopus.com/inward/record.url?scp=84887897881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887897881&partnerID=8YFLogxK
U2 - 10.1124/jpet.113.208256
DO - 10.1124/jpet.113.208256
M3 - Article
C2 - 24045421
AN - SCOPUS:84887897881
SN - 0022-3565
VL - 347
SP - 746
EP - 754
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 3
ER -