Image-based Meta-Reinforcement Learning for Autonomous Terminal Guidance of an Impactor in a Binary Asteroid System

Lorenzo Federici, Andrea Scorsoglio, Luca Ghilardi, Andrea D’ambrosio, Boris Benedikter, Alessandro Zavoli, Roberto Furfaro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

This paper focuses on the use of meta-reinforcement learning for the autonomous guidance of a spacecraft with low thrust during the terminal phase of an impact mission towards a binary asteroid system. The control policy is replaced by a convolutional-recurrent neural network, which is used to map optical observations collected by the on-board camera to the optimal control thrust and thrusting times. The network is trained by Proximal Policy Optimization, a state-of-the-art policy-gradient reinforcement learning algorithm. The final phase of the DART mission is used as test case. The objective is to maneuver the spacecraft to impact on the smaller object, Dimorphos, in the 65803 Didymos binary system. The spacecraft dynamics are described within the bi-elliptic restricted four-body problem with an additional solar radiation pressure term. The initial conditions are randomly scattered according to actual specifications of the DART mission. A random error on the orbital position of Dimorphos is also considered to reflect an uncertainty on the binary system’s characteristics and dynamics. The control system aims at minimizing the error on the final spacecraft position. Numerical results show that the guidance system is able to correctly drive the spacecraft towards the final impact point in almost all test scenarios.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum 2022
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106316
DOIs
StatePublished - 2022
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022 - San Diego, United States
Duration: Jan 3 2022Jan 7 2022

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Country/TerritoryUnited States
CitySan Diego
Period1/3/221/7/22

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Image-based Meta-Reinforcement Learning for Autonomous Terminal Guidance of an Impactor in a Binary Asteroid System'. Together they form a unique fingerprint.

Cite this