TY - JOUR
T1 - IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways
AU - Kao, Cheng Yuan
AU - Chen, Yin
AU - Thai, Philip
AU - Wachi, Shinichiro
AU - Huang, Fei
AU - Kim, Christy
AU - Harper, Richart W.
AU - Wu, Reen
PY - 2004/9/1
Y1 - 2004/9/1
N2 - Using microarray gene expression analysis, we first observed a profound elevation of human β-defensin-2 (hBD-2) message in IL-17-treated primary human airway epithelial cells. Further comparison of this stimulation with a panel of cytokines (IL-1α, 1β, 2-13, and 15-18; IFN-γ; GM-CSF; and TNF-α demonstrated that IL-17 was the most potent cytokine to induce hBD-2 message (>75-fold). IL-17-induced stimulation of hBD-2 was time and dose dependent, and this stimulation also occurred at the protein level. Further studies demonstrated that hBD-2 stimulation was attenuated by IL-17R-specific Ab, but not by IL-1R antagonist or the neutralizing anti-IL-6 Ab. This suggests an IL-17R-mediated signaling pathway rather than an IL-17-induced IL-1αβ and/or IL-6 autocrine/paracrine loop. hBD-2 stimulation was sensitive to the inhibition of the JAK pathway, and to the inhibitors that affect NF-κB translocation and the DNA-binding activity of its p65 NF-κB subunit. Transient transfection of airway epithelial cells with an hBD-2 promoter-luciferase reporter gene expression construct demonstrated that IL-17 stimulated promoter-reporter gene activity, suggesting a transcriptional mechanism for hBD-2 induction. These results support an IL-17R-mediated signaling pathway involving JAK and NF-κB in the transcriptional stimulation of hBD-2 gene expression in airway epithelium. Because IL-17 has been identified in a number of airway diseases, especially diseases related to microbial infection, these findings provide a new insight into how IL-17 may play an important link between innate and adaptive immunity, thereby combating infection locally within the airway epithelium.
AB - Using microarray gene expression analysis, we first observed a profound elevation of human β-defensin-2 (hBD-2) message in IL-17-treated primary human airway epithelial cells. Further comparison of this stimulation with a panel of cytokines (IL-1α, 1β, 2-13, and 15-18; IFN-γ; GM-CSF; and TNF-α demonstrated that IL-17 was the most potent cytokine to induce hBD-2 message (>75-fold). IL-17-induced stimulation of hBD-2 was time and dose dependent, and this stimulation also occurred at the protein level. Further studies demonstrated that hBD-2 stimulation was attenuated by IL-17R-specific Ab, but not by IL-1R antagonist or the neutralizing anti-IL-6 Ab. This suggests an IL-17R-mediated signaling pathway rather than an IL-17-induced IL-1αβ and/or IL-6 autocrine/paracrine loop. hBD-2 stimulation was sensitive to the inhibition of the JAK pathway, and to the inhibitors that affect NF-κB translocation and the DNA-binding activity of its p65 NF-κB subunit. Transient transfection of airway epithelial cells with an hBD-2 promoter-luciferase reporter gene expression construct demonstrated that IL-17 stimulated promoter-reporter gene activity, suggesting a transcriptional mechanism for hBD-2 induction. These results support an IL-17R-mediated signaling pathway involving JAK and NF-κB in the transcriptional stimulation of hBD-2 gene expression in airway epithelium. Because IL-17 has been identified in a number of airway diseases, especially diseases related to microbial infection, these findings provide a new insight into how IL-17 may play an important link between innate and adaptive immunity, thereby combating infection locally within the airway epithelium.
UR - http://www.scopus.com/inward/record.url?scp=4344688669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4344688669&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.173.5.3482
DO - 10.4049/jimmunol.173.5.3482
M3 - Article
C2 - 15322213
AN - SCOPUS:4344688669
SN - 0022-1767
VL - 173
SP - 3482
EP - 3491
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -