TY - JOUR
T1 - III. Centrally-mediated bombesin effects on gastrointestinal motility
AU - Porreca, Frank
AU - Burks, Thomas F.
AU - Koslo, Randy J.
N1 - Funding Information:
This study was supported by USPHS Grants NS 21193 (FP), DA 02163 (TFB) and a grant from Gibson-Stephens Neuropharmaceuticals (Tucson, AZ).
PY - 1985/7/15
Y1 - 1985/7/15
N2 - Administration of bombesin into the lateral cerebral ventricle (i.c.v.) of rats results in a dose-related delay in gastric emptying and small intestinal transit. Recordings of intestinal intraluminal pressure in this species show that the i.c.v. peptide produces a dose-related increase in the frequency of duodenal contractions, and a complex inhibitory/excitatory jejunal effect at low and high doses, respectively. Intrathecal (i.th.) or i.c.v., but not intraperitoneal (i.p.), bombesin produces a dose-related slowing of gastrointestinal and colonic transit in mice. I.c.v. bombesin is 13.5 and 3406 times more potent in inhibition of gastrointestinal transit than when given by the i.th. or i.p. routes, respectively. Similarly, the i.c.v. peptide is 1.54 and over 11000 times more potent in slowing mouse colonic transit than when given by the i.th. or i.p. routes, respectively. The substance P analogue, D-Arg1, D-Pro2, D-Trp7,9, Leu11-Substance P (DAPTL-SP)(a reported bombesin antagonist in vitro) was not effective in blocking the gastrointestinal transit effects of the peptide in vivo. Transection of the spinal cord at the level of the second thoracic vertebra (T2) eliminates the gastrointestinal and colonic effects of i.th., but not i.c.v. bombesin. Thus, bombesin can affect motor function of the gut via activity within the brain or spinal cord of rats and mice; the activity of the peptide when given at the supraspinal level depends on an intact vagus nerve and adrenal-pituitary axis, while the activity of the peptide given at the spinal level appears to depend on the integrity of ascending spinal-supraspinal pathways.
AB - Administration of bombesin into the lateral cerebral ventricle (i.c.v.) of rats results in a dose-related delay in gastric emptying and small intestinal transit. Recordings of intestinal intraluminal pressure in this species show that the i.c.v. peptide produces a dose-related increase in the frequency of duodenal contractions, and a complex inhibitory/excitatory jejunal effect at low and high doses, respectively. Intrathecal (i.th.) or i.c.v., but not intraperitoneal (i.p.), bombesin produces a dose-related slowing of gastrointestinal and colonic transit in mice. I.c.v. bombesin is 13.5 and 3406 times more potent in inhibition of gastrointestinal transit than when given by the i.th. or i.p. routes, respectively. Similarly, the i.c.v. peptide is 1.54 and over 11000 times more potent in slowing mouse colonic transit than when given by the i.th. or i.p. routes, respectively. The substance P analogue, D-Arg1, D-Pro2, D-Trp7,9, Leu11-Substance P (DAPTL-SP)(a reported bombesin antagonist in vitro) was not effective in blocking the gastrointestinal transit effects of the peptide in vivo. Transection of the spinal cord at the level of the second thoracic vertebra (T2) eliminates the gastrointestinal and colonic effects of i.th., but not i.c.v. bombesin. Thus, bombesin can affect motor function of the gut via activity within the brain or spinal cord of rats and mice; the activity of the peptide when given at the supraspinal level depends on an intact vagus nerve and adrenal-pituitary axis, while the activity of the peptide given at the spinal level appears to depend on the integrity of ascending spinal-supraspinal pathways.
UR - http://www.scopus.com/inward/record.url?scp=0021859792&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021859792&partnerID=8YFLogxK
U2 - 10.1016/0024-3205(85)90415-1
DO - 10.1016/0024-3205(85)90415-1
M3 - Article
C2 - 2409425
AN - SCOPUS:0021859792
SN - 0024-3205
VL - 37
SP - 125
EP - 134
JO - Life Sciences
JF - Life Sciences
IS - 2
ER -