Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques

Matthew A. Kupinski, John W. Hoppin, Eric Clarkson, Harrison H. Barrett

Research output: Contribution to journalArticlepeer-review

130 Scopus citations

Abstract

The ideal observer sets an upper limit on the performance of an observer on a detection or classification task. The performance of the ideal observer can be used to optimize hardware components of imaging systems and also to determine another observer's relative performance in comparison with the best possible observer. The ideal observer employs complete knowledge of the statistics of the imaging system, including the noise and object variability. Thus computing the ideal observer for images (large-dimensional vectors) is burdensome without severely restricting the randomness in the imaging system, e.g., assuming a flat object. We present a method for computing the ideal-observer test statistic and performance by using Markov-chain Monte Carlo techniques when we have a well-characterized imaging system, knowledge of the noise statistics, and a stochastic object model. We demonstrate the method by comparing three different parallel-hole collimator imaging systems in simulation.

Original languageEnglish (US)
Pages (from-to)430-438
Number of pages9
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume20
Issue number3
DOIs
StatePublished - Mar 2003

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques'. Together they form a unique fingerprint.

Cite this