TY - JOUR
T1 - Hypoxia-inducible factor-1alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells
AU - Malhotra, Ricky
AU - Tyson, David W.
AU - Rosevear, Henry M.
AU - Brosius, Frank C.
N1 - Funding Information:
This work was supported in part by a National Institutes of Health grant RO1 HL60156 (FCB), American Heart Association Scientist Development Grant (RM) and a NIH grant RPO 6ODK-20572 which supports the Michigan Diabetes Research and Training Center (MDRTC). We express our sincere thanks to Greg Semenza for providing the HIF-1α constructs and his expert comments during the course of this study.
PY - 2008/4/30
Y1 - 2008/4/30
N2 - Background: Hypoxia inducible factor-1 (HIF-1) is a transcription factor that functions to maintain cellular homeostasis in response to hypoxia. There is evidence that HIF-1 can also trigger apoptosis, possibly when cellular responses are inadequate to meet energy demands under hypoxic conditions. Methods: Cardiac derived H9c2 and renal tubular epithelial HK-2 cells expressing either the wild type oxygen regulated subunit of HIF-1 (pcDNA3-Hif-1α) or a dominant negative version that lacked both DNA binding and transactivation domains (pcDNA3-DN-Hif-1α), were maintained in culture and exposed to hypoxia. An RNA interference approach was also employed to selectively knockdown expression of Hif-1α. Apoptosis was analyzed in both H9c2 and HK-2 cells by Hoechst and TUNEL staining, caspase 3 activity assays and activation of pro-apoptotic Bcl2 family member Bax. Results: Overexpression of pcDNA3-DN-Hif-1α led to a significant reduction in hypoxia -induced apoptosis (17 ± 2%, P < 0.01) in H9c2 cells compared to both control-transfected and wild type Hif-1α transfected cells. Moreover, selective ablation of HIF-1α protein expression by RNA interference in H9c2 cells led to 55% reduction of caspase 3 activity and 46% reduction in the number of apoptotic cells as determined by Hoechst 33258 staining, after hypoxia. Finally, upregulation of the pro-apoptotic protein, Bax, was found in H9c2 cells overexpressing full-length pcDNA3-HA-HIF-1α exposed to hypoxia. In HK-2 cells overexpression of wild-type Hif-1α led to a two-fold increase in Hif-1α levels during hypoxia. This resulted in a 3.4-fold increase in apoptotic cells and a concomitant increase in caspase 3 activity during hypoxia when compared to vector transfected control cells. HIF-1α also induced upregulation of Bax in HK-2 cells. In addition, introduction of dominant negative Hif-1α constructs in both H9c2 and HK-2 -cells led to decreased active Bax expression. Conclusion: These data demonstrate that HIF-1α is an important component of the apoptotic signaling machinery in the two cell types.
AB - Background: Hypoxia inducible factor-1 (HIF-1) is a transcription factor that functions to maintain cellular homeostasis in response to hypoxia. There is evidence that HIF-1 can also trigger apoptosis, possibly when cellular responses are inadequate to meet energy demands under hypoxic conditions. Methods: Cardiac derived H9c2 and renal tubular epithelial HK-2 cells expressing either the wild type oxygen regulated subunit of HIF-1 (pcDNA3-Hif-1α) or a dominant negative version that lacked both DNA binding and transactivation domains (pcDNA3-DN-Hif-1α), were maintained in culture and exposed to hypoxia. An RNA interference approach was also employed to selectively knockdown expression of Hif-1α. Apoptosis was analyzed in both H9c2 and HK-2 cells by Hoechst and TUNEL staining, caspase 3 activity assays and activation of pro-apoptotic Bcl2 family member Bax. Results: Overexpression of pcDNA3-DN-Hif-1α led to a significant reduction in hypoxia -induced apoptosis (17 ± 2%, P < 0.01) in H9c2 cells compared to both control-transfected and wild type Hif-1α transfected cells. Moreover, selective ablation of HIF-1α protein expression by RNA interference in H9c2 cells led to 55% reduction of caspase 3 activity and 46% reduction in the number of apoptotic cells as determined by Hoechst 33258 staining, after hypoxia. Finally, upregulation of the pro-apoptotic protein, Bax, was found in H9c2 cells overexpressing full-length pcDNA3-HA-HIF-1α exposed to hypoxia. In HK-2 cells overexpression of wild-type Hif-1α led to a two-fold increase in Hif-1α levels during hypoxia. This resulted in a 3.4-fold increase in apoptotic cells and a concomitant increase in caspase 3 activity during hypoxia when compared to vector transfected control cells. HIF-1α also induced upregulation of Bax in HK-2 cells. In addition, introduction of dominant negative Hif-1α constructs in both H9c2 and HK-2 -cells led to decreased active Bax expression. Conclusion: These data demonstrate that HIF-1α is an important component of the apoptotic signaling machinery in the two cell types.
UR - http://www.scopus.com/inward/record.url?scp=44149095751&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44149095751&partnerID=8YFLogxK
U2 - 10.1186/1471-2261-8-9
DO - 10.1186/1471-2261-8-9
M3 - Article
C2 - 18447926
AN - SCOPUS:44149095751
SN - 1471-2261
VL - 8
JO - BMC Cardiovascular Disorders
JF - BMC Cardiovascular Disorders
M1 - 9
ER -