@inproceedings{da716412743d405bb57ce0e6e6452320,
title = "Hypersonic crossflow instability",
abstract = "Under the auspices of NATO STO AVT-240: Hypersonic Boundary-Layer Transition Prediction, this paper describes the results of close collaborations among the authors toward the fundamental understanding and modeling of the instabilities associated with three-dimensional boundary layers in hypersonic flight. Specifically, the focus is directed towards the crossflow instability. A common geometry is analyzed from both a computational and experimental perspective using methods that are unique to each facility and methodology. Disturbance wavelength and trajectory, surface roughness, and the use of quiet wind tunnels are just a few items found to be key factors in the investigation of the crossflow instability. Quiet tunnels allow experiments to be performed in a disturbance environment comparable to that expected from flight, and the combination of different facilities and computations display a comprehensive analysis that would be unobtainable from any individual approach alone.",
author = "Kocian, {Travis S.} and Moyes, {Alexander J.} and Reed, {Helen L.} and Craig, {Stuart A.} and Saric, {William S.} and Schneider, {Steven P.} and Edelman, {Joshua B.}",
note = "Publisher Copyright: {\textcopyright} 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.; AIAA Aerospace Sciences Meeting, 2018 ; Conference date: 08-01-2018 Through 12-01-2018",
year = "2018",
doi = "10.2514/6.2018-0061",
language = "English (US)",
isbn = "9781624105241",
series = "AIAA Aerospace Sciences Meeting, 2018",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Aerospace Sciences Meeting",
}