TY - JOUR
T1 - Hypermethylation of multiple genes in pancreatic adenocarcinoma
AU - Ueki, Takashi
AU - Toyota, Minoru
AU - Sohn, Taylor
AU - Yeo, Charles J.
AU - Issa, Jean Pierre J.
AU - Hruban, Ralph H.
AU - Goggins, Michael
PY - 2000/4/1
Y1 - 2000/4/1
N2 - Hypermethylation of CpG islands is a common mechanism by which tumor suppressor genes are inactivated. We studied 45 pancreatic carcinomas and 14 normal pancreata for aberrant DNA methylation of CpG islands of multiple genes and clones using methylation-specific PCR (MSP) and bisulfite-modified sequencing. Using MSP, we detected aberrant methylation of at least one locus in 60% of carcinomas. The genes analyzed included RARβ (methylated in 20%), p16 (18%), CACNA1G (16%), TIMP-3 (11%), E-cad (7%), THBS1 (7%), hMLH1 (4%), DAP kinase (2%), and MGMT (0%). In addition, aberrant methylation was found in three CpG islands (MINT31, -1, and -2) in 38, 38, and 14% of carcinomas, respectively. Hypermethylation was largely confined to the carcinomas with only three loci (E-cad, DAP kinase, and MINT2) harboring methylation in some normal pancreata (36, 21, and 14%, respectively). Simultaneous methylation of at least four loci was observed in 5 of 36 (14%) pancreatic adenocarcinomas. We defined this subgroup of pancreatic adenocarcinomas as 'CpG island- methylator-phenotype positive (CIMP+).' Two of four carcinomas with microsatellite instability harbored promoter hypermethylation of hMLH1, and both cases were CIMP+. Thus, we conclude that many pancreatic carcinomas hypermethylate a small percentage of genes, whereas a subset displays a CIMP+ phenotype.
AB - Hypermethylation of CpG islands is a common mechanism by which tumor suppressor genes are inactivated. We studied 45 pancreatic carcinomas and 14 normal pancreata for aberrant DNA methylation of CpG islands of multiple genes and clones using methylation-specific PCR (MSP) and bisulfite-modified sequencing. Using MSP, we detected aberrant methylation of at least one locus in 60% of carcinomas. The genes analyzed included RARβ (methylated in 20%), p16 (18%), CACNA1G (16%), TIMP-3 (11%), E-cad (7%), THBS1 (7%), hMLH1 (4%), DAP kinase (2%), and MGMT (0%). In addition, aberrant methylation was found in three CpG islands (MINT31, -1, and -2) in 38, 38, and 14% of carcinomas, respectively. Hypermethylation was largely confined to the carcinomas with only three loci (E-cad, DAP kinase, and MINT2) harboring methylation in some normal pancreata (36, 21, and 14%, respectively). Simultaneous methylation of at least four loci was observed in 5 of 36 (14%) pancreatic adenocarcinomas. We defined this subgroup of pancreatic adenocarcinomas as 'CpG island- methylator-phenotype positive (CIMP+).' Two of four carcinomas with microsatellite instability harbored promoter hypermethylation of hMLH1, and both cases were CIMP+. Thus, we conclude that many pancreatic carcinomas hypermethylate a small percentage of genes, whereas a subset displays a CIMP+ phenotype.
UR - http://www.scopus.com/inward/record.url?scp=0034075153&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034075153&partnerID=8YFLogxK
M3 - Article
C2 - 10766168
AN - SCOPUS:0034075153
SN - 0008-5472
VL - 60
SP - 1835
EP - 1839
JO - Cancer Research
JF - Cancer Research
IS - 7
ER -