TY - JOUR
T1 - Hybrid model of neutrino masses and oscillations
T2 - Bulk neutrinos in the split-fermion scenario
AU - Dienes, Keith R.
AU - Hossenfelder, Sabine
PY - 2006
Y1 - 2006
N2 - Higher-dimensional models of neutrino physics with one or more right-handed neutrinos in the bulk have attracted considerable attention in recent years. However, a critical issue for such models is to find a way of introducing the required flavor dependence needed for generating neutrino oscillations. In this paper, we point out that a natural minimal framework that accomplishes this can be constructed by combining the bulk-neutrino hypothesis for right-handed neutrinos with the split-fermion scenario for left-handed neutrinos. This combination leads to a unique flavor signature for neutrino phenomenology which easily incorporates large flavor mixing angles. This hybrid scenario also has a number of additional important features. For example, one previous difficulty of the split-fermion scenario applied to neutrinos has been that the mass matrix is exponentially sensitive to neutrino displacements within the brane. However, in our hybrid scenario, the interactions between the brane and bulk naturally convert this dependence from exponential to linear. Another important feature is that our hybrid scenario provides its own natural regulator for Kaluza-Klein sums. Thus, in our scenario, all Kaluza-Klein summations are manifestly finite, even in cases with multiple extra dimensions. But most importantly, our mechanism completely decouples the effective neutrino flavor mixing angles from the sizes of the overlaps between the neutrino wave functions within the brane. Thus, we are able to obtain large neutrino mixing angles even when these neutrinos have significant spatial separations and their overlaps vanish.
AB - Higher-dimensional models of neutrino physics with one or more right-handed neutrinos in the bulk have attracted considerable attention in recent years. However, a critical issue for such models is to find a way of introducing the required flavor dependence needed for generating neutrino oscillations. In this paper, we point out that a natural minimal framework that accomplishes this can be constructed by combining the bulk-neutrino hypothesis for right-handed neutrinos with the split-fermion scenario for left-handed neutrinos. This combination leads to a unique flavor signature for neutrino phenomenology which easily incorporates large flavor mixing angles. This hybrid scenario also has a number of additional important features. For example, one previous difficulty of the split-fermion scenario applied to neutrinos has been that the mass matrix is exponentially sensitive to neutrino displacements within the brane. However, in our hybrid scenario, the interactions between the brane and bulk naturally convert this dependence from exponential to linear. Another important feature is that our hybrid scenario provides its own natural regulator for Kaluza-Klein sums. Thus, in our scenario, all Kaluza-Klein summations are manifestly finite, even in cases with multiple extra dimensions. But most importantly, our mechanism completely decouples the effective neutrino flavor mixing angles from the sizes of the overlaps between the neutrino wave functions within the brane. Thus, we are able to obtain large neutrino mixing angles even when these neutrinos have significant spatial separations and their overlaps vanish.
UR - http://www.scopus.com/inward/record.url?scp=33748780363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748780363&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.74.065013
DO - 10.1103/PhysRevD.74.065013
M3 - Article
AN - SCOPUS:33748780363
SN - 1550-7998
VL - 74
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 065013
ER -