Abstract
The primary method for neuronal communication involves the extracellular release of small molecules that are packaged in secretory vesicles. We have developed a platform to separate, lyse, and electrochemically measure the contents of single vesicles using a hybrid capillary-microfluidic device. This device incorporates a sheath-flow design at the outlet of the capillary for chemical lysis of vesicles and subsequent electrochemical detection. The effect of sheath-flow on analyte dispersion was characterized using confocal fluorescence microscopy and electro-chemical detection. At increased flow rates, dispersion was minimized, leading to higher separation efficiencies but lower detected amounts. Large unilamellar vesicles (diameter ̃ 200 nm), a model for secretory vesicles, were prepared by extrusion and loaded with an electroactive molecule. They were then separated and detected using the hybrid capillary-microfluidic device. Determination of size from internalized analyte concentration provides a method to characterize the liposomal suspension. These results were compared to an orthogonal size measurement using dynamic light scattering to validate the detection platform.
Original language | English (US) |
---|---|
Pages (from-to) | 2294-2302 |
Number of pages | 9 |
Journal | Analytical Chemistry |
Volume | 81 |
Issue number | 6 |
DOIs | |
State | Published - Mar 15 2009 |
Externally published | Yes |
ASJC Scopus subject areas
- Analytical Chemistry