TY - JOUR
T1 - Human islet viability and function is maintained during high-density shipment in silicone rubber membrane vessels
AU - Kitzmann, J. P.
AU - Pepper, A. R.
AU - Gala-Lopez, B.
AU - Pawlick, R.
AU - Kin, T.
AU - O'Gorman, D.
AU - Mueller, K. R.
AU - Gruessner, Angelika C
AU - Avgoustiniatos, E. S.
AU - Karatzas, T.
AU - Szot, G. L.
AU - Posselt, A. M.
AU - Stock, P. G.
AU - Wilson, J. R.
AU - Shapiro, A. M.
AU - Papas, K. K.
N1 - Funding Information:
This work was supported in part by a grant from the NIH/NIDDK Phase II SBIR DK069865.
PY - 2014
Y1 - 2014
N2 - Background. The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Method. IE were isolated from two manufacturing centers and shipped in 10-cm2 surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm2), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1-3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag+/- mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function.
AB - Background. The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Method. IE were isolated from two manufacturing centers and shipped in 10-cm2 surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm2), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1-3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag+/- mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function.
UR - http://www.scopus.com/inward/record.url?scp=84906099834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906099834&partnerID=8YFLogxK
U2 - 10.1016/j.transproceed.2014.06.002
DO - 10.1016/j.transproceed.2014.06.002
M3 - Article
C2 - 25131090
AN - SCOPUS:84906099834
SN - 0041-1345
VL - 46
SP - 1989
EP - 1991
JO - Transplantation Proceedings
JF - Transplantation Proceedings
IS - 6
ER -