Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance

Prasanna Satpute-Krishnan, Sara X. Langseth, Tricia R. Serio

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

Inheritance of phenotypic traits depends on two key events: replication of the determinant of that trait and partitioning of these copies between mother and daughter cells. Although these processes are well understood for nucleic acid-based genes, the mechanisms by which protein-only or prion-based genetic elements direct phenotypic inheritance are poorly understood. Here, we report a process crucial for inheritance of the Saccharomyces cerevisiae prion [PSI +], a self-replicating conformer of the Sup35 protein. By tightly controlling expression of a Sup35-GFP fusion, we directly observe remodeling of existing Sup35[PSI+] complexes in vivo. This dynamic change in Sup35[PSI+] is lost when the molecular chaperone Hsp104, a factor essential for propagation of all yeast prions, is functionally impaired. The loss of Sup35[PSI+] remodeling by Hsp104 decreases the mobility of these complexes in the cytosol, creates a segregation bias that limits their transmission to daughter cells, and consequently diminishes the efficiency of conversion of newly made Sup35 to the prion form. Our observations resolve several seemingly conflicting reports on the mechanism of Hsp104 action and point to a single Hsp104-dependent event in prion propagation.

Original languageEnglish (US)
Pages (from-to)251-262
Number of pages12
JournalPLoS biology
Volume5
Issue number2
DOIs
StatePublished - Feb 2007

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance'. Together they form a unique fingerprint.

Cite this